Latest on Response and Restoration Blog

Syndicate content
An inside look at the science of cleaning up and fixing the mess of marine pollution
Updated: 19 hours 32 min ago

National Research Council Releases NOAA-Sponsored Report on Arctic Oil Spills

Wed, 04/23/2014 - 11:20

The Coast Guard Cutter Healy broke ice for the Russian-flagged tanker Renda on their way to Nome, Alaska, in January of 2012 to deliver more than 1.3 million gallons of petroleum products to the city of Nome. (U.S. Coast Guard)

Responding to a potential oil spill in the U.S. Arctic presents unique logistical, environmental, and cultural challenges unparalleled in any other U.S. water body. In our effort to seek solutions to these challenges and enhance our Arctic preparedness and response capabilities, NOAA co-sponsored a report, Responding to Oil Spills in the U.S. Arctic Marine Environment, directed and released by the National Research Council today.

Several recommendations in the report are of interest to NOAA’s Office of Response and Restoration (OR&R), including the need for:

  • Up-to-date high-resolution nautical charts and shoreline maps.
  • A real-time Arctic ocean-ice meteorological forecasting system.
  • A comprehensive, collaborative, long-term Arctic oil spill research program.
  • Regularly scheduled oil spill exercises to test and evaluate the flexible and scalable organizational structures needed for a highly reliable Arctic oil spill response.
  • A decision process such as the Net Environmental Benefit Analysis for selecting appropriate response options.

In addition, the report mentions NOAA’s ongoing Arctic efforts including our Arctic Environmental Response Mapping Application (ERMA), our oil spill trajectory modeling, and our innovative data sharing efforts. Find out more about OR&R’s efforts related to the Arctic region at response.restoration.noaa.gov/arctic.

Download the full NRC report.

This report dovetails with NOAA’s 2014 Arctic Action Plan, released on April 21, which provides an integrated overview of NOAA’s diverse Arctic programs and how these missions, products, and services support the goals set forth in the President’s National Strategy for the Arctic Region [PDF].

In addition, the Government Accountability Office (GAO) released a report [PDF] in March of 2014, which examined U.S. actions related to developing and investing in Arctic maritime infrastructure. The report outlines key issues related to commercial activity in the U.S. Arctic over the next decade.


Watch Art Explain What Kind of Habitat Young Salmon Need to Thrive

Mon, 04/21/2014 - 05:24

What do young salmon need to grow into the kind of big, healthy adult salmon enjoyed by people as well as bears, seals, and other wildlife? A recent collaboration between NOAA Fisheries and the Pacific Northwest College of Arts makes the answer come to life in a beautiful animation by artists Beryl Allee and John Summerson.

Watch the intersection of art and science as we follow young salmon happily swimming through the cool, shallow waters along a shore. We see the bits of wood, tangled tree roots, and scattered rocks that provide these fish with both insects to eat and protection from predators.

But what happens when a home or business shows up along the water’s edge? How do people remake the shoreline? What kind of environment does this create for those same little salmon?

NOAA partnered with the Pacific Northwest College of Arts to create this moving and educational tool to raise awareness among waterfront landowners and the general public about how the decisions we make affect endangered salmon. In particular, NOAA wanted to address the practice of “armoring,” or using physical structures such as rocks and concrete to protect shorelines from coastal erosion. As we can see in the animation, armored shorelines do not make for happy, healthy young salmon.

However, alternatives to armoring shorelines with hard materials are emerging. They include using plants and organic materials to stabilize the shores while also preserving or creating the kind of habitat young salmon need.

Creating better habitat for fish is often the goal of NOAA’s Damage Assessment, Remediation, and Restoration Program (DARRP). When we determine that fish were harmed after an oil spill or hazardous chemical release, we, with the help of a range of partners and the public, identify and implement restoration projects to make up for this harm.

Take a look at a few examples in which we built better habitat for salmon:

Beaver Creek, Oregon

A tanker truck carrying gasoline overturned on scenic Highway 26 through central Oregon in 1999, spilling 5,000 gallons of gasoline into Beaver Butte Creek and impacting steelhead trout and Chinook salmon. Working with the Confederated Tribes of the Warm Springs Reservation of Oregon and other partners, we have helped implement five restoration projects. They range from adding large wood to stream banks to provide fish habitat to installing two beaver dam–mimicking structures to improve water quality.

White River, Washington

In 2006 a system failure sent 18,000 gallons of diesel into creeks and wetlands important to endangered Chinook salmon around Washington’s White River. To improve and expand habitat for these salmon, NOAA and our partners removed roadfill and added large pieces of wood (“logjams”) along the edges of the nearby Greenwater River. This restoration project will help slow and redirect the river’s straight, fast-moving currents, creating deep pools for salmon to feed and hide from predators and allowing some of the river water to overflow into slower, shallower tributaries perfect for spawning salmon.

Adak, Alaska

On the remote island of Adak in Alaska’s Aleutian Islands, a tanker overfilled an underground storage tank in 2010. This resulted in up to 142,800 gallons of diesel eventually flowing into the nearby salmon stream, Helmet Creek. Pink salmon and Dolly Varden trout were particularly affected. In 2013 NOAA and our partners restored fish passage to the creek, improved habitat and water quality, made stream flow and channel improvements, and removed at least a dozen 55-gallon drums from the creek bed and banks.

You can also watch a video to learn how NOAA is restoring recreationally and commercially important fish through a variety of projects in the northeast United States.


NOAA and Partners Invest in an Innovative New Stewardship Program for Washington’s Commencement Bay

Wed, 04/16/2014 - 06:46

NOAA hands off a $4.9 million check to the nonprofit EarthCorps, which will use the funding for planning, restoration, monitoring, and maintenance at 17 restoration sites across Washington’s Commencement Bay. U.S. Representatives Dennis Heck (WA), Derek Kilmer (WA), and Peter DeFazio (OR) were also in attendance. (NOAA)

Last week, NOAA and partners awarded $4.9 million to EarthCorps for long-term stewardship of restoration sites in Commencement Bay near Tacoma, Washington. The Commencement Bay Stewardship Collaborative is part of a larger investment that will conserve habitat for fish and wildlife and give local urban communities access to the shoreline.

EarthCorps, which was competitively selected for this funding, is a non-profit organization that trains environmental leaders through local service projects.

Volunteers restore a site in Commencement Bay. (NOAA)

The funding will support planning, restoration, monitoring, and maintenance at 17 sites across the Bay. These sites were restored over the past 20 years as part of the ongoing Commencement Bay natural resource damage assessment (NRDA) case. This is the first time that a third party has received funding to launch a comprehensive stewardship program as part of a NRDA case. We hope it will become a model of stewardship for future cases.

Commencement Bay is the harbor for Tacoma, Washington, at the southern end of Puget Sound. Many of the waterways leading into the Bay—which provide habitat for salmon, steelhead, and other fish—have been polluted by industrial and commercial activities. NOAA and other federal, state, and tribal partners have been working for decades to address the contamination and restore damaged habitat.

One of the sites that EarthCorps will maintain is the Sha Dadx project on the bank of the Puyallup River. The lower Puyallup River was straightened in the early 20th century, leaving little off-channel habitat—which juvenile salmon use for rearing and foraging. The project reconnected the river to a curve that had been cut off by levees. This restored 20 acres of off-channel habitat, and fish and wildlife are using the site.

Most of the parties responsible for the contamination have settled and begun implementing restoration. NOAA and its partners are evaluating options for pursuing parties that haven’t settled yet. As new sites are added, stewardship funds will be secured at settlement and likely added to the overall long-term effort.

This story was originally posted on NOAA’s National Marine Fisheries Service Habitat Conservation website.


NOAA Scientists Offer In-depth Workshops at 2014 International Oil Spill Conference

Mon, 04/14/2014 - 16:57

Every three years, experts representing organizations ranging from government and industry to academic research and spill response gather at the International Oil Spill Conference. This event serves as a forum for sharing knowledge and addressing challenges in planning for and responding to oil spills. NOAA plays a key role in planning and participating in this conference and is one of the seven permanent sponsors of the event.

This year is no different. In addition to presenting on topics such as subsea applications of dispersants and long-term ecological evaluations, Office of Response and Restoration staff are teaching several half-day workshops giving deeper perspectives, offering practical applications, and even providing hands-on experience.

If you’ll be heading to the conference in Savannah, Ga., from May 5–8, 2014, take advantage of the following short courses to pick our brains and expand yours. Or, if you can’t make it, consider applying for our next Science of Oil Spills training this August in Seattle, Wash.

Environmental Trade-offs Focusing on Protected Species

When: Monday, May 5, 2014, 8:00 a.m. to 12:00 p.m. Eastern

Who: Ed Levine (Scientific Support Coordinator), Jim Jeansonne (Scientific Support Coordinator), Gary Shigenaka (Marine Biologist), Paige Doelling (Scientific Support Coordinator)

Level: Introductory

What: Learn the basics about a variety of marine protected species, including whales, dolphins, sea turtles, birds, fish, corals, invertebrates, and plants. This course will cover where they are found, the laws that protect them, and other information necessary to understand how they may be affected by an oil spill. The course will discuss the impacts of specific response operations on marine protected species, and the decision making process for cleaning up the oil while also working in the best interest of the protected species. We will also discuss knowledge gaps and research needs and considerations when information is not available.

Advanced Oil Spill Modeling and Data Sources

When: Monday, May 5, 2014, 1:00 p.m. to 5:00 p.m. Eastern

Who: Glen Watabayashi (Oceanographer), Amy MacFadyen (Oceanographer), Chris Barker (Oceanographer)

Level: Intermediate

What: This is a rare opportunity to get hands-on experience with NOAA’s oil spill modeling tools for use in response planning and trajectory forecasting. We will lead participants as they use our General NOAA Operational Modeling Environment (GNOME) model for predicting oil trajectories and the Automated Data Inquiry for Oil Spills (ADIOS) model for predicting oil weathering.

Arctic Drilling Environmental Considerations

When: Monday, May 5, 2014, 1:00 p.m. to 5:00 p.m. Eastern

Who: Kate Clark (Acting Chief of Staff), Mary Campbell Baker (Northwest/Great Lakes Damage Assessment Supervisor)

Level: Introductory

What: How are Arctic development decisions being made given environmental, political, and societal uncertainty? How should they be made? Examine how a changing Arctic is intersecting with increased shipping and oil development to alter the profile of human and environmental risks.

Worldwide Practice Approaches to Environmental Liability Assessment

When: Monday, May 5, 2014, 1:00 p.m. to 5:00 p.m. Eastern

Who: Ian Zelo (Oil Spill Coordinator) and Jessica White (Deputy Director, NOAA’s Disaster Response Center)

Level: Intermediate

What: In the United States, Natural Resource Damage Assessment (NRDA) regulations promulgated pursuant to the Oil Pollution Act of 1990 institutionalized the concept of NRDA and the cooperative NRDA. Learn some of the key principles related the NRDA and restoration process in the context of oil spills, as well as suggested best practices and how they may be implemented at various sites in the U.S. and worldwide.


Science of Oil Spills Training Now Accepting Applications for Summer 2014

Fri, 04/11/2014 - 12:19

These classes help prepare responders to understand the environmental risks and scientific considerations when addressing oil spills. (California Office of Spill Prevention and Response)

NOAA’s Office of Response and Restoration, a leader in providing scientific information in response to marine pollution, has scheduled a Science of Oil Spills (SOS) class for the week of August 4–8, 2014 in Seattle, Wash.

We will accept applications for this class through Friday, June 13, 2014, and we will notify applicants regarding their participation status by Friday, June 27, 2014. Class will begin on Monday afternoon, August 4, and will conclude at noon on Friday, August 8.

SOS classes help spill responders increase their understanding of oil spill science when analyzing spills and making risk-based decisions. They are designed for new and mid-level spill responders.

These trainings cover topics including:

  • Fate and behavior of oil spilled in the environment.
  • An introduction to oil chemistry and toxicity.
  • A review of basic spill response options for open water and shorelines.
  • Spill case studies.
  • Principles of ecological risk assessment.
  • A field trip.
  • An introduction to damage assessment techniques.
  • Determining cleanup endpoints.

To view the topics for the next SOS class, download a sample agenda [PDF, 170 KB].

Please be advised that classes are not filled on a first-come, first-served basis. The Office of Response and Restoration tries to diversify the participant composition to ensure a variety of perspectives and experiences to enrich the workshop for the benefit of all participants. The class will be limited to 40 participants.

For more information, and to learn how to apply for the class, visit the SOS Classes page.


Little “Bugs” Can Spread Big Pollution Through Contaminated Rivers

Thu, 04/10/2014 - 09:53

This is a post by the NOAA Restoration Center’s Lauren Senkyr.

When we think of natural resources harmed by pesticides, toxic chemicals, and oil spills, most of us probably envision soaring birds or adorable river otters.  Some of us may consider creatures below the water’s surface, like the salmon and other fish that the more charismatic animals eat, and that we like to eat ourselves. But it’s rare that we spend much time imagining what contamination means for the smaller organisms that we don’t see, or can’t see without a microscope.

A mayfly, pictured above, is an important component in the diet of salmon and other fish. (NOAA)

The tiny creatures that live in the “benthos”—the mud, sand, and stones at the bottoms of rivers—are called benthic macroinvertebrates. Sometimes mistakenly called “bugs,” the benthic macroinvertebrate community actually includes a variety of animals like snails, clams, and worms, in addition to insects like mayflies, caddisflies, and midges. They play several important roles in an ecosystem. They help cycle and filter nutrients and they are a major food source for fish and other animals.

Though we don’t see them often, benthic macroinvertebrates play an extremely important role in river ecosystems. In polluted rivers, such as the lower 10 miles of the Willamette River in Portland, Oregon, these creatures serve as food web pathways for legacy contaminants like PCBs and DDT. Because benthic macroinvertebrates live and feed in close contact with contaminated muck, they are prone to accumulation of contaminants in their bodies.  They are, in turn, eaten by predators and it is in this way that contaminants move “up” through the food web to larger, more easily recognizable animals such as sturgeon, mink, and bald eagles.

Some of the ways contaminants can move through the food chain in the Willamette River. (Portland Harbor Trustee Council)

The image above depicts some of the pathways that contaminants follow as they move up through the food web in Oregon’s Portland Harbor. Benthic macroinvertebrates are at the bottom of the food web. They are eaten by larger animals, like salmon, sturgeon, and bass. Those fish are then eaten by birds (like osprey and eagle), mammals (like mink), and people.

An illustration showing how concentrations of the pesticide DDT biomagnify 10 million times as they move up the food chain from macroinvertebrates to fish to birds of prey. (U.S. Fish and Wildlife Service)

As PCB and DDT contamination makes its way up the food chain through these organisms, it is stored in their fat and biomagnified, meaning that the level of contamination you find in a large organism like an osprey is many times more than what you would find in a single water-dwelling insect. This is because an osprey eats many fish in its lifetime, and each of those fish eats many benthic macroinvertebrates.

Therefore, a relatively small amount of contamination in a single insect accumulates to a large amount of contamination in a bird or mammal that may have never eaten an insect directly.  The graphic to the right was developed by the U.S. Fish and Wildlife Service to illustrate how DDT concentrations biomagnify 10 million times as they move up the food chain.

Benthic macroinvertebrates can be used by people to assess water quality. Certain types of benthic macroinvertebrates cannot tolerate pollution, whereas others are extremely tolerant of it.  For example, if you were to turn over a few stones in a Northwest streambed and find caddisfly nymphs (pictured below encased in tiny pebbles), you would have an indication of good water quality. Caddisflies are very sensitive to poor water quality conditions.

Caddisfly nymphs encased in tiny pebbles on a river bottom are indicators of high water quality. (NOAA)

Surveys in Portland Harbor have shown that we have a pretty simple and uniform benthic macroinvertebrate population in the area. As you might expect, it is mostly made up of pollution-tolerant species. NOAA Restoration Center staff are leading restoration planning efforts at Portland Harbor and it is our hope that once cleanup and restoration projects are completed, we will see a more diverse assemblage of benthic macroinvertebrates in the Lower Willamette River.

Lauren Senkyr is a Habitat Restoration Specialist with NOAA’s Restoration Center.  Based out of Portland, Ore., she works on restoration planning and community outreach for the Portland Harbor Superfund site as well as other habitat restoration efforts throughout the state of Oregon.


Marine Life in Gulf of Mexico Faces Multiple Challenges

Tue, 04/08/2014 - 10:50

Editor’s Note: This is a revised posting by Maggie Broadwater of NOAA’s National Centers for Coastal Ocean Science that has corrected some factual misstatements in the original post.

A bottlenose dolphin calf in the Gulf of Mexico. (NOAA)

Animals living in coastal waters can face a number of environmental stressors—both from nature and from humans—which, in turn, may have compounding effects. This may be the case for marine life in the Gulf of Mexico which experiences both oil spills and the presence of toxic algae blooms.

On the Lookout

Marine sentinels, like bottlenose dolphins in the Gulf of Mexico, share this coastal environment with humans and consume food from many of the same sources. As marine sentinels, these marine mammals are similar to the proverbial “canary in the coal mine.” Studying bottlenose dolphins may alert us humans to the presence of chemical pollutants, pathogens, and toxins from algae (simple ocean plants) that may be in Gulf waters.

Texas Gulf waters, for an example, are a haven for a diverse array of harmful algae. Additional environmental threats for this area include oil spills, stormwater and agricultural runoff, and industrial pollution.

Recently, we have been learning about the potential effects of oil on bottlenose dolphin populations in the Gulf of Mexico as a result of the Deepwater Horizon oil spill in April 2010. Dolphins with exposure to oil may develop lung disease and adrenal impacts, and be less able to deal with stress.

Certain types of algae produce toxins that can harm fish, mammals, and birds and cause illness in humans. During harmful algal blooms, which occur when colonies of algae “bloom” or grow out of control, the high toxin levels observed often result in illness or death for some marine life, and low-level exposure may compromise their health and increase their susceptibility to other stressors.

However, we know very little about the combined effects from both oil and harmful algal blooms.

A barge loaded with marine fuel oil sits partially submerged in the Houston Ship Channel, March 22, 2014. The bulk carrier Summer Wind, reported a collision between the Summer Wind and a barge, containing 924,000 gallons of fuel oil, towed by the motor vessel Miss Susan. (U.S. Coast Guard)

Familiar Waters

Prior to the Galveston Bay oil spill, Texas officials closed Galveston Bay to the harvesting of oysters, clams, and mussels on March 14, 2014 after detecting elevated levels of Dinophysis. These harmful algae can produce toxins that result in diarrhetic shellfish poisoning when people eat contaminated shellfish. Four days later, on March 18, trained volunteers from NOAA’s Phytoplankton Monitoring Network detected Pseudo-nitzschia in Galveston Bay. NOAA Harmful Algal Bloom scientist Steve Morton, Ph.D., confirmed the presence of Pseudo-nitzchia multiseries, a type of algae known as a diatom that produces a potent neurotoxin affecting humans, birds, and marine mammals. NOAA’s Harmful Algal Bloom Analytical Response Team confirmed the toxin was present and notified Texas officials.

When Oil and Algae Mix

Studying marine mammal strandings and deaths helps NOAA scientists and coastal managers understand the effects of harmful algal blooms across seasons, years, and geographical regions. We know that acute exposure to algal toxins through diet can cause death in marine mammals, and that even exposures to these toxins that don’t kill the animal may result in serious long-term effects, including chronic epilepsy, heart disease, and reproductive failure.

But in many cases, we are still working to figure out which level of exposure to these toxins makes an animal ill and which leads to death. We also don’t yet know the effects of long-term low-level toxin exposure, exposure to multiple toxins at the same time, or repeated exposure to the same or multiple toxins. Current NOAA research is addressing many of these questions.

A dolphin mortality event may have many contributing factors; harmful algae may only be one piece in the puzzle. Thus, we do not yet know what effects recent Dinophysis and Pseudo-nitzchia blooms may have on the current marine mammal populations living in Texas coastal waters. Coastal managers and researchers are on alert for marine mammal strandings that may be associated with exposure to harmful algae, but the story is unfolding, and is very complex.

Galveston volunteer with NOAA’s Phytoplankton Monitoring Network helps identify toxic algae. (NOAA)

On March 22, 2014, four days after harmful algae were found in Galveston Bay, the M/V Summer Wind collided with oil tank-barge Kirby 27706 in Galveston Bay near Texas City, releasing approximately 168,000 gallons of thick, sticky fuel oil. The Port of Houston was closed until March 27. State and federal agencies are responding via the Unified Command. NOAA is providing scientific support and Natural Resource Damage Assessment personnel are working to identify injured natural resources and restoration needs. Much of the oil has come ashore and survey teams are evaluating the shorelines to make cleanup recommendations.

Time will tell if the harmful algal toxins and oil in Galveston Bay have a major negative effect on the marine mammals, fish, and sea turtles that live in surrounding waters. Fortunately, NOAA scientists with a range of expertise—from dolphins to harmful algae to oil spills—are on the job.

Maggie Broadwater is a Research Chemist and serves as coordinator for NOAA’s Harmful Algal Bloom Analytical Response Team at the National Centers for Coastal Ocean Science in Charleston, S.C.  Dr. Broadwater earned a Ph.D. in Biochemistry from the Medical University of South Carolina in 2012 and has a M.S. in Biomedical Sciences and a B.S. in Biochemistry.


University of Washington Partners with NOAA to Research and Prepare for Changes in the Oil and Gas Industry

Fri, 04/04/2014 - 11:49

This is a guest post by the Emerging Risks Workgroup at the University of Washington in Seattle.

Hydraulic fracturing, or fracking, has opened up natural gas production in the United States, to the point that industry is increasingly looking to export it as liquified natural gas (LNG) via tanker. (Photo: Amanda Graham/Creative Commons Attribution-NonCommercial-NoDerivs 2.0 Generic License)

From fracking to oil trains, the landscape of oil production and transportation in North America has been undergoing a major transformation in recent years. This transformation has implications for how NOAA’s Office of Response and Restoration prepares its scientific toolbox for dealing with oil spills. Our group of graduate students from the University of Washington partnered with NOAA on a project to identify major trends in the changes to risk in transporting oil and natural gas along U.S. coasts and major rivers.

Scope

To study these risks, we researched the trends that are changing the way in which petroleum is produced and transported in the United States. We also examined three high-profile incidents:

We reviewed the lessons learned from each of these responses and determined whether they also apply to the emerging risks we identified.

Research on Risks: Fracking, LNG, and Oil Trains

The largest catalyst for changes in the petroleum market in the U.S. is the proliferation of hydraulic fracturing, or “fracking,” combined with horizontal drilling. Fracking is a technique which forces fluids under great pressure through production wells to “fracture” rock formations and free greater amounts of crude oil or natural gas. This has drastically changed the amount of petroleum produced, where the petroleum is produced, and where it is transported.

Fracking also comes with its own transportation issues. The large amounts of wastewater from fracking operations are often transported or treated near waterways, increasing the risk for a spill of contaminated wastewater.

Fracking has increased the amount of natural gas production in the U.S., which is transported within North America as a gas through pipelines. However, with the increase in gas production, energy companies are looking to export some of this outside of North America as liquefied natural gas, or LNG. Several projects have been approved to export LNG, and several more are awaiting approval. LNG is currently transported by tanker, and with these new export projects, LNG tanker traffic will increase.

LNG is also being explored as a marine fuel option, which will require LNG bunkering infrastructure to supply the fuel needs of vessels that will run on LNG. Several LNG terminals and bunkering operations are in various stages of planning and development, and the presence of more vessels carrying LNG as a fuel or cargo will need to be addressed in future spill response planning.

According to the Association of American Railroads, U.S. railroads shipping crude oil jumped from 9,500 carloads in 2008 to an estimated 400,000 carloads in 2013. (Photo: Roy Luck/Creative Commons Attribution 2.0 Generic License)

Fracking has also led to greater amounts of crude oil produced in the U.S. Much of this new oil is being transported by rail, historically not a typical way to move lots of crude oil. This change in volume and mode of transportation for crude oil also presents risks for accidents. There have been several recent high-profile derailments of oil trains, many including fires or explosions.

The increase in crude oil transportation by rail is in large part a stopgap measure. First, because existing pipeline infrastructure isn’t available in certain parts of the country, including North Dakota and Wyoming, which are now producing crude oil. Second, because new pipelines take time to get approved and then constructed to serve new areas. Pipeline construction has increased significantly since 2008 but not without some issues.

All of this would be further complicated if the national ban on exporting crude oil (rather than refined oil) were lifted, an idea which has some supporters. This could change the amount and type of oil being transported by different modes to different locations, especially ports, and increase the risk of oil spills into nearby waterways.

Additional Risks and Recommendations

Offshore wind development and LNG infrastructure were also identified as potential risks that could further complicate petroleum production and transport in the United States. These developments could increase traffic in certain areas or place additional obstacles (i.e., wind turbines) in the path of vessels carrying petroleum products, potentially increasing the risk of spills. Additionally, the decrease in Arctic sea ice is changing oil exploration opportunities and shipping routes through the Arctic, which could shift the entire petroleum shipping picture in the U.S.

After analyzing these overall trends, we turned to recommendations from previous incidents involving oil exploration and spills. There were 248 recommendations made in the post-incident reports for the Cosco Busan, Deepwater Horizon, and Shell Kulluk. Out of these 248, we identified 29 recommendations that could apply in the context of these new, overall changes in petroleum transportation. These were divided into five major categories: contingency planning, equipment and responder training, industry oversight, funding, and public outreach and education.

Key Findings

Overall, we identified four major findings about petroleum production and transport:

  • Increased and more complex transportation risk.
  • Trends that hinder spill prevention and complicate spill response.
  • Lessons learned from past incidents are still valid for future responses.
  • There are several potential gaps in regulation, funding, planning, and coordination.

If you have any questions about the group, its members, our research, or would like to read any of our scoping documents, memos, or final paper, please visit our website at www.erw.comuv.com. We are happy to answer any questions.

The Emerging Risks Workgroup (ERW) is a group of four graduate students from the University of Washington working with UW faculty advisor Robert Pavia and Incident Operations Coordinator Doug Helton of NOAA’s Office of Response and Restoration. The students in the group are all part of the Environmental Management Certificate at UW’s Program on the Environment. Stacey Crecy is from the School of Marine and Environmental Affairs, and Andrew Cronholm, Barry Hershly, and Marie Novak are from the Evans School of Public Affairs. The Environmental Management Certificate culminates in a two-quarter capstone project that allows the student teams to work on a project for an outside client and then present their findings.

The ERW would like to thank our sponsor NOAA OR&R, and Doug Helton. We would also like to thank our UW faculty advisor, Robert Pavia of the School of Marine and Environmental Affairs, Anne DeMelle of the Program on the Environment, and all of the people that guided our research.

The views expressed in this post reflect those of the authors and do not necessarily reflect the official views of the National Oceanic and Atmospheric Administration (NOAA) or the federal government.


Texas City “Y” Incident: Aftermath of the Oil Spill in Galveston Bay, Texas

Mon, 03/31/2014 - 19:11

Task force members remove oil-contaminated sand from the beach on Matagorda Island, Texas, March 30, 2014. Cleanup operations are being directed by a unified command comprised of personnel from the Texas General Land Office, U.S. Coast Guard and Kirby Inland marine. (U.S. Coast Guard)

The March 22, 2014 vessel collision in Galveston Bay (see Kirby Barge Oil Spill, Houston/Texas City Ship Channel) resulted in an oil spill of approximately 168,000 gallons.

Although scattered and trace amounts of oil were found as far west as Mustang and Padre Islands, almost all of the oil is still thought to be stranded on shorelines between Galveston and Matagorda.  Some widely scattered floating tarballs and sheens may be possible, but no floating oil was observed on overflights today.

As of Monday, March 31, NOAA National Marine Fisheries Service teams report 21 dolphins and 4 turtles stranded. Most of these are in the Galveston area but reports from Matagorda Island are increasing.  All of the dolphins were dead, two turtles were captured alive and are being rehabilitated.  Most of the animals were not visibly oiled but necropsies are still underway.  Approximately 150 dead birds have been reported in the Galveston area and 30 in the Matagorda area.

Cleanup activities in the Galveston area are proceeding and the U.S. Coast Guard is beginning the process to downsize staffing and phase out response efforts.

Two members of the Shoreline Assessment Team locate oiled impact points on Matagorda Island, March 29, 2014. The Unified Command in Port O’Connor is overcoming logistical challenges posed by the remote island in order to clean up the migrating oil from the Texas City collision. (U.S. Coast Guard)

Surveying Oiled Shorelines

After an oil spill like this one happens along the coast, spill responders need to figure out and document where oil has come ashore, what habitats have been affected, and how to clean up the shoreline.

NOAA helped develop a systematic method for surveying an affected shoreline after an oil spill. This method, known as Shoreline Cleanup and Assessment Technique (SCAT), is designed to support decision-making for shoreline cleanup. We have SCAT experts helping coordinate these shoreline surveying efforts for the oiled beaches in Texas.

In general, SCAT surveys begin early in the response to assess initial shoreline conditions (including even before oil comes ashore, as a reference) and ideally continue to work in advance of cleanup.

Surveys continue during the response to verify shoreline oiling, cleanup effectiveness, and eventually, to conduct final evaluations of shorelines to ensure they meet standards for ending cleanup.

SCAT teams include people trained in the techniques, procedures, and terminology of shoreline assessment. Members of a SCAT team may come from federal agencies (usually from the NOAA Scientific Support Team or U.S. Coast Guard), state agencies, a representative of the organization responsible for the spill, and possibly the landowner or other local stakeholders.

While out walking the shoreline, SCAT team members prepare field maps and forms detailing the area surveyed and make specific cleanup recommendations. Later, they go back to the areas surveyed to verify cleanup effectiveness, modifying guidelines as needed if conditions change.

The data they collect informs a shoreline cleanup plan that maximizes the recovery of oiled habitats and resources, while minimizing the risk of injury from cleanup efforts. This means, for example, determining whether active cleanup is necessary or whether certain limitations on cleanup are needed to protect ecological, economic, or cultural concerns.


Oil Seeps, Shipwrecks, and Surfers Ride the Waves in California

Mon, 03/31/2014 - 16:02

This is a post by Jordan Stout, the Office of Response and Restoration’s Scientific Support Coordinator based in Alameda, Calif.

A tarball which washed up near California’s Half Moon Bay in mid-February 2014. (Credit: Beach Watch volunteers with the Farallones Marine Sanctuary Association)

What do natural oil seeps, shipwrecks, and surfers have in common? The quick answer: tarballs and oceanography. The long answer: Let me tell you a story …

A rash of tarballs, which are thick, sticky, and small pieces of partially broken-down oil, washed ashore at Half Moon Bay, Calif., south of San Francisco back in mid-February. This isn’t an unusual occurrence this time of year, but several of us involved in spill response still received phone calls about them, so some of us checked things out.

Winds and ocean currents are the primary movers of floating oil. A quick look at conditions around that time indicated that floating stuff (like oil) would have generally been moving northwards up the coast. Off of Monterey Bay, there had been prolonged winds out of the south several times since December, including just prior to the tarballs’ arrival. Coastal currents at the time also showed the ocean’s surface waters moving generally up the coast. Then, just hours before their arrival, winds switched direction and started coming out of the west-northwest, pushing the tarballs ashore.

Seeps and Shipwrecks

It’s common winter conditions like that, combined with the many natural oil seeps of southern California, that often result in tarballs naturally coming ashore in central and northern California. Like I said, wintertime tarballs are not unheard of in this area and people weren’t terribly concerned. Even so, some of the tarballs were relatively “fresh” and heavy weather and seas had rolled through during a storm the previous weekend. This got some people thinking about the shipwreck S/S Jacob Luckenbach, a freighter which sank near San Francisco in 1953 and began leaking oil since at least 1992.

When salvage divers were removing oil from the Luckenbach back in 2002, they reported feeling surges along the bottom under some wave conditions. The wreck is 468 feet long, lying in about 175 feet of water and is roughly 20 miles northwest of Half Moon Bay. Could this or another nearby wreck have been jostled by the previous weekend’s storm and produced some of the tarballs now coming ashore?

Making Waves

Discussions with the oceanographers in NOAA’s Office of Response and Restoration provided me with some key kernels of wisdom about what might have happened. First, the height of a wave influences the degree of effects beneath the ocean surface, but the wave length determines how deep those effects go. So, big waves with long wavelengths have greater influence at greater depths than smaller waves with shorter wavelengths.

Credit: NOAA’s Ocean Service

Second, waves in deep water cause effects at depths half their length. This means that a wave with a length of 100 meters can be felt to a depth of 50 meters. That was great stuff, I thought. But the data buoys off of California, if they collect any wave data at all, only collect wave height and period (the time it takes a wave to move from one high or low point to the next) but not wave length. So, now what?

As it turns out, our office’s excellent oceanographers also have a rule of thumb for calculating wave length from this information: a wave with a 10-second period has a wave length of about 100 meters in deep water. So, that same 10-second wave would be felt at 50 meters, which is similar to the depth of the shipwreck Jacob Luckenbach (54 meters or 175 feet).

Looking at nearby data buoys, significant wave heights during the previous weekend’s storm topped out at 2.8 meters (about 9 feet) with a 9-second period. So, the sunken Luckenbach may have actually “felt” the storm a little bit, but probably not enough to cause a spill of any oil remaining on board it.

Riding Waves

Even so, just two weeks before the tarballs came ashore, waves in the area were much, much bigger. The biggest waves the area had seen so far in 2014, in fact: more than 4 meters (13 feet) high, with a 24-second period. If the Luckenbach had been jostled by any waves at all in 2014, you would think it would have been from those waves in late January, and yet there were no reports of tarballs (fresh or otherwise) even though winds were blowing towards shore for about a week afterwards. This leads me to conclude that the recent increase in tarballs came from somewhere other than a nearby shipwreck.

Where do surfers fit in all this? That day in late January when the shipwreck S/S Jacob Luckenbach was being knocked around by the biggest waves of 2014 was the day of the Mavericks Invitational surf contest in Half Moon Bay. People came from all over to ride those big waves—and it was amazing!

Jordan Stout currently serves as the NOAA Scientific Support Coordinator in California where he provides scientific and technical support to the U.S. Coast Guard and Environmental Protection Agency in preparing for and responding to oil spills and hazardous material releases. He has been involved in supporting many significant incidents and responses in California and throughout the nation.


Progress at the Texas City “Y” Oil Spill in Galveston Bay

Fri, 03/28/2014 - 18:11

Federal and local agency workers help clean up the beaches affected by oil spill on March 27, 2014. Cleanup efforts continue for the Texas City “Y” response, which resulted from a collision between a bulk carrier and a barge Saturday in the Houston Ship Channel. (U.S. Coast Guard)

POSTED: March 28, 2014 | UPDATED: March 30, 2014 –The March 22 vessel collision in Galveston Bay (see Kirby Barge Oil Spill, Houston/Texas City Ship Channel, Port Bolivar, Texas) that resulted in an oil spill of approximately 168,000 gallons caused the closure of the heavily trafficked Port of Houston for 3 days. Some oil came ashore near the collision site in the Galveston area, but northeasterly winds carried the remainder out of the Bay. Longshore currents then carried the oil to the west, some as far as 150 miles, were it stranded on Matagorda Island. A small fraction of the oil is still afloat off Mustang and Padre Islands.

Volunteers assess a three-mile stretch of shoreline at Stewart Beach in Galveston, Texas, on March 28, 2014. Workers and volunteers have been working Galveston shoreline in response to the Texas City oil spill. (U.S. Coast Guard)

Although most all of the oil is still thought to be stranded on shorelines between Galveston and Matagorda, overflights this morning noted sheens and tarballs further west than anticipated, near Aransas Pass. This oil could impact Mustang and Padre Islands and the need for additional trajectory forecasts is being reconsidered. Overflight observers also noted that shoreline oil on Matagorda Island is rapidly being buried under clean sand. Burial of oil is common on active shorelines, but increases the complexity of the response, especially in areas where mechanical cleanup methods are not feasible or inappropriate because of their environmental sensitivity.

NOAA is providing scientific support to the U.S. Coast Guard, including science coordination, trajectories, shoreline assessment, information management and common operational picture, overflight, weather, resources at risk, seafood safety, and marine mammal and turtle stranding personnel. The NOAA Weather Service Incident Meteorologist is on-scene.

See March 27 U.S. Coast Guard news release.


Latest Research Finds Serious Heart Troubles When Oil and Young Tuna Mix

Wed, 03/26/2014 - 11:46

Atlantic bluefin tuna are a very ecologically and economically valuable species. However, populations in the Gulf of Mexico are at historically low levels. (Copyright: Gilbert Van Ryckevorsel/TAG A Giant)

In May of 2010, when the Deepwater Horizon rig was drilling for oil in the open waters of the Gulf of Mexico, schools of tuna and other large fish would have been moving into the northern Gulf. This is where, each spring and summer, they lay delicate, transparent eggs that float and hatch near the ocean surface. After the oil well suffered a catastrophic blowout and released 4.9 million barrels of oil, these fish eggs may have been exposed to the huge slicks of oil floating up through the same warm waters.

An international team of researchers from NOAA, Stanford University, the University of Miami, and Australia recently published a study in the journal Proceedings of the National Academy of Sciences exploring what happens when tuna mix with oil early in life.

“What we’re interested in is how the Deepwater Horizon accident in the Gulf of Mexico would have impacted open-ocean fishes that spawn in this region, such as tunas, marlins, and swordfishes,” said Stanford University scientist Barbara Block.

This study is part of ongoing research to determine how the waters, lands, and life of the Gulf of Mexico were harmed by the Deepwater Horizon oil spill and response. It also builds on decades of research examining the impacts of crude oil on fish, first pioneered after the 1989 Exxon Valdez oil spill in Alaska. Based on those studies, NOAA and the rest of the research team knew that crude oil was toxic to young fish and taught them to look carefully at their developing hearts.

“One of the most important findings was the discovery that the developing fish heart is very sensitive to certain chemicals derived from crude oil,” said Nat Scholz of NOAA’s Northwest Fisheries Science Center.

This is why in this latest study they examined oil’s impacts on young bluefin tuna, yellowfin tuna, and amberjack, all large fish that hunt at the top of the food chain and reproduce in the warm waters of the open ocean. The researchers exposed fertilized fish eggs to small droplets of crude oil collected from the surface and the wellhead from the Deepwater Horizon spill, using concentrations comparable to those during the spill. Next, they put the transparent eggs and young fish under the microscope to observe the oil’s impacts at different stages of development. Using a technology similar to doing ultrasounds on humans, the researchers were able create a digital record of the fishes’ beating hearts.

All three species of fish showed dramatic effects from the oil, regardless of how weathered (broken down) it was. Severely malformed and malfunctioning hearts was the most severe impact. Depending on the oil concentration, the developing fish had slow and irregular heartbeats and excess fluid around the heart. Other serious effects, including spine, eye, and jaw deformities, were a result of this heart failure.

A normal yellowfin tuna larva not long after hatching (top), and a larva exposed to Deepwater Horizon crude oil as it developed in the egg (bottom). The oil-exposed larva shows a suite of abnormalities including excess fluid building up around the heart due to heart failure and poor growth of fins and eyes. (NOAA)

“Crude oil shuts down key cellular processes in fish heart cells that regulate beat-to-beat function,” noted Block, referencing another study by this team.

As the oil concentration, particularly the levels of polycyclic aromatic hydrocarbons (PAHs), went up, so did the severity of the effects on the fish. Severely affected fish with heart defects are unlikely to survive. Others looked normal on the outside but had underlying issues like irregular heartbeats. This could mean that while some fish survived directly swimming through oil, heart conditions could follow them through life, impairing their (very important) swimming ability and perhaps leading to an earlier-than-natural death.

“The heart is one of the first organs to appear, and it starts beating before it’s completely built,” said NOAA Fisheries biologist John Incardona. “Anything that alters heart rhythm during embryonic development will likely impact the final shape of the heart and the ability of the adult fish to survive in the wild.”

Even at low levels, oil can have severe effects on young fish, not only in the short-term but throughout the course of their lives. These subtle but serious impacts are a lesson still obvious in the recovery of marine animals and habitats still happening 25 years after the Exxon Valdez oil spill.


Update on the Texas City “Y” Response in Galveston Bay

Tue, 03/25/2014 - 16:12

Workers deploy boom around the site of the oil spill in the Houston Ship Channel near the Texas City Dike, March 24, 2014. More than 71,000 feet of boom has been deployed in response to the oil spill that occurred Saturday afternoon, after a bulk carrier and a barge collided in the Houston Ship Channel. (U.S. Coast Guard)

 

POSTED MARCH 25, 2014 | UPDATED MARCH 27, 2014 –The Saturday vessel collision in Galveston Bay (see “Vessel Collision and Spill in Galveston Bay”) that resulted in an oil spill of approximately 168,000 gallons, caused the closure of the heavily trafficked Port of Houston for 3 days. The Houston Ship Channel is now open, with some restrictions. There is a safety zone in effect in cleanup areas.

Absorbent material is deployed near the Texas City Dike, March 24, 2014. More than 71,000 feet of boom has been deployed in response to the oil spill that occurred Saturday afternoon, after a bulk carrier and a barge collided in the Houston Ship Channel. (U.S. Coast Guard)

As predicted, strong southerly winds stranded much of the offshore oil overnight in the Matagorda region and these onshore winds are expected to bring ashore the remaining floating oil off Matagorda Island by Friday morning. Closer to the collision site, there have been very few new reports of remaining floating oil in Galveston Bay or offshore Galveston Island. However, new shoreline impacts may still be occurring in those areas due to re-mobilization of stranded oil or remaining scattered sheens and tarballs.

NOAA is providing scientific support to the U.S. Coast Guard, including trajectory forecasts of the floating oil movement, shoreline assessment, information management, overflight tracking of the oil, weather forecasts, and natural and economic resources at risk. Marine mammal and turtle stranding network personnel are responding. The NOAA Weather Service Incident Meteorologist is on-scene, as are additional NOAA personnel. Natural resource damage assessment personnel are at Galveston Bay and are initiating preassessment activities. The preassessment period is an on-scene evaluation of what the type of oil is, where it has gone, where it may be going and what resources are or may be at risk.

See the latest OR&R trajectory forecast map, showing the likely areas of oiling tomorrow.


Vessel Collision and Spill in Galveston Bay

Mon, 03/24/2014 - 15:35

A Coast Guard response boat patrols the Kirby Barge 27706 during cleanup efforts near Texas City Dike, March 23, 2014. The oil spill occurred, Saturday, after a collision between a bulk carrier and the barge. (U.S. Coast Guard)

On March 22, 2014, at approximately 12:30 pm, the 585 foot bulk carrier M/V Summer Wind collided with the oil tank-barge Kirby 27706. The incident occurred in Galveston Bay near Texas City, Texas. The barge contained approximately 1,000,000 gallons of intermediate fuel oil in multiple tanks.

The #2 starboard tank was punctured, spilling approximately 168,000 gallons of oil. The barge is aground and the remaining oil was lightered (removed) late Sunday. The M/V Summer Wind is stable and not leaking oil. As of March 23, the Houston Ship Channel and Intracoastal Waterway was closed to traffic, including ferries and cruise ships. U.S. Coast Guard, NOAA, U.S. Fish and Wildlife Service, the Texas General Land Office and other agencies are responding.

NOAA is providing scientific support to the U.S. Coast Guard, including forecasts of the floating oil movement, shoreline assessment, information management, overflight tracking of the oil, weather forecasts, and natural and economic resources at risk. Marine mammal and turtle stranding network personnel are also standing by. The NOAA Weather Service Incident Meteorologist is on-scene, as are NOAA’s Office of Response and Restoration personnel. Natural resource damage assessment personnel will be at Galveston Bay to initiate studies that could be used to identify injured resource and restoration needs.

Responders work together to load hundreds of feet of boom onto vessels at the Texas City Dike, March 23, 2014. More than 35,000 feet of boom has been deployed in response to the oil spill that occurred Saturday afternoon, after a bulk carrier and a barge collided in the Houston Ship Channel. (U.S Coast Guard)

Expected Behavior of the Spilled Oil

Intermediate fuel oils are produced by blending heavy residual oils with a light oil to meet specifications for viscosity and pour point. Their behavior can be summarized as follows:

  • IFO-380 will usually spread into thick slicks which can contain large amounts of oil. Oil recovery by skimmers and vacuum pumps can be very effective, particularly early in the spill.
  • Very little of this is likely to mix into the water column. It can form thick streamers or, under strong wind conditions, break into patches and tarballs.
  • IFO-380 is a persistent oil; only a relatively small amount is expected to evaporate within the first hours of a spill. Thus, spilled oil can be carried long distances by winds and currents.
  • IFO-380 can be very viscous and sticky, meaning that stranded oil tends to remain on the surface rather than penetrate sediments. Light accumulations usually form a “bath-tub ring” at the high-water line; heavy accumulations can pool on the surface.
  • Floating oil could potentially sink once it strands on the shoreline, picks up sediment, and then is eroded by wave action.

The incident occurred just inside the entrance of Galveston Bay. Northeasterly winds are expected to carry the oil out of the Bay, but onshore winds expected midweek could bring the oil back along the ocean beaches. The oil, likely in the form of tarballs, could be spread over a large section of ocean beaches.

Find more updates on the oil spill response from the Unified Command.


Remembering the Exxon Valdez: Collecting 25 Years of Memories and Memorabilia

Mon, 03/24/2014 - 10:02

On May 24, 1989, NOAA marine biologist Gary Shigenaka was on board the NOAA ship Fairweather in Prince William Sound, Alaska. It had been two months since the tanker Exxon Valdez, now tied up for repairs nearby, had run aground and spilled nearly 11 million gallons of crude oil into the waters the Fairweather was now sailing through.

NOAA marine biologist Gary Shigenaka in 1989 aboard the tanker Exxon Valdez itself. In retrospect, Shigenaka joked that he should have made off with the ship’s life preserver for his eventual collection of artifacts related to the ship and spill. (NOAA)

That day Shigenaka and the other NOAA scientists aboard the Fairweather were collecting data about the status of fish after the oil spill.

Little did he know he would be collecting something else too: a little piece of history that would inspire his 25-year-long collection of curiosities related to the Exxon Valdez. Shigenaka’s collection of items would eventually grow to include everything from tourist trinkets poking fun at the spill to safety award memorabilia given to the tanker’s crew years before it grounded.

This unusual collection’s first item came to Shigenaka back on that May day in 1989, when the NOAA scientists on their ship were flagged down by the crippled tanker’s salvage crew. Come here, they said. We think you’re going to want to see this.

Apparently, while the salvage crew was busy making repairs to the damaged Exxon Valdez, they had noticed big schools of fish swimming in and out of the holes in the ship.

So Shigenaka and a few others went aboard the Exxon Valdez, putting a small boat inside the flooded cargo holds and throwing their nets into the waters. They were unsuccessful at catching the fish moving in and out of the ship, but Shigenaka and the other NOAA scientists didn’t leave the infamous tanker empty-handed.

They noticed that the salvage workers who had initially invited them on board were cutting away steel frames hanging off of the ship. Naturally, they asked if they could have one of the steel frames, which they had cut into pieces a few inches long so that each of these fish-counting scientists could take home a piece of the Exxon Valdez.

After Shigenaka took this nondescript chunk of steel back home to Seattle, Wash., he heard rumors about the existence of another item that piqued his interest. The Exxon Shipping Company had allegedly produced safety calendars which featured the previously exemplary tanker Exxon Valdez during the very month that it would cause the largest oil spill in U.S. waters at the time—March 1989. Feeling a bit like Moby Dick’s Captain Ahab chasing down a mythical white whale, Shigenaka’s efforts were finally rewarded when he saw one of these calendars pop up on eBay. He bought it. And that was just the beginning.

This young biologist who began his career in oil spill response with the fateful Exxon Valdez spill would find both his professional and personal life shaped by this monumental spill. Today, Shigenaka has an alert set up so that he is notified when anything related to the Exxon Valdez shows up on eBay. He will occasionally bid when something catches his eye, mostly rarer items from the days before the oil spill.

To commemorate the 25 years since the Exxon Valdez oil spill, take a peek at what is in Gary Shigenaka’s personal collection of Exxon Valdez artifacts.

Read a report by Gary Shigenaka summarizing information about the Exxon Valdez oil spill and response along with NOAA’s role and research over the past 25 years.


Detecting Change in a Changing World: 25 Years After the Exxon Valdez Oil Spill

Fri, 03/21/2014 - 10:17

Life between high and low tide along the Alaskan coast is literally rough and tumble.

The marine animals and plants living there have to deal with both crashing sea waves at high tide and the drying heat of the sun at low tide. Such a life can be up and down, boom and bust, as favorable conditions come and go quickly and marine animals and plants are forced to react and repopulate just as quickly.

But what happens when oil from the tanker Exxon Valdez enters this dynamic picture—and 25 years later, still hasn’t completely left? What happens when bigger changes to the ocean and global climate begin arriving in these waters already in flux?

Telling the Difference

In 2011 NOAA marine biologist Gary Shigenaka (right) sifts through the sediments of Alaska’s Lower Herring Bay, looking for the tiny marine life that live there. (Photo by Gerry Sanger/Sound Ecosystem Adventures)

In the 25 years since the Exxon Valdez oil spill hit Alaska’s Prince William Sound, NOAA scientists, including marine biologist Gary Shigenaka and ecologist Alan Mearns, have been studying the impacts of the spill and cleanup measures on these animals and plants in rocky tidal waters.

Their experiments and monitoring over the long term revealed a high degree of natural variability in these communities that was unrelated to the oil spill. They saw large changes in, for example, numbers of mussels, seaweeds, and barnacles from year to year even in areas known to be unaffected by the oil spill.

This translated into a major challenge. How do scientists tell the difference between shifts in marine communities due to natural variability and those changes caused by the oil spill?

Several key themes emerged from NOAA’s long-term monitoring and subsequent experimental research:

  • impact. How do we measure it?
  • recovery. How do we define it?
  • variability. How do we account for it?
  • subtle connection to large-scale oceanic influences. How do we recognize it?

What NOAA has learned from these themes informs our understanding of oil spill response and cleanup, as well as of ecosystems on a larger scale. None of this, however, would have been apparent without the long-term monitoring effort. This is an important lesson learned from the Exxon Valdez experience: that monitoring and research, often viewed as an unnecessary luxury in the context of a large oil spill response, are useful, even essential, for framing the scientific and practical lessons learned.

Remote Possibilities

As NOAA looks ahead to the future—and with the Gulf of Mexico’s Deepwater Horizon oil spill in our recent past—we can incorporate and apply lessons of the Exxon Valdez long-term program into how we will support response decisions and define impact and recovery.

The Arctic is a region of intense interest and scrutiny. Climate change is opening previously inaccessible waters and dramatically shifting what scientists previously considered “normal” environmental conditions. This is allowing new oil production and increased maritime traffic through Arctic waters, increasing the risk of oil spills in remote and changing environments.

If and when something bad happens in the Arctic, how do scientists determine the impact and what recovery means, if our reference point is a rapidly moving target? What is our model habitat for restoring one area impacted by oil when the “unimpacted” reference areas are undergoing their own major changes?

Tracking the progress of recovery for marine life and habitats following the Exxon Valdez oil spill is no easy task. Even today, not all of the species have recovered or we don’t have enough information to know. (NOAA) Click to enlarge.

Listening in

NOAA marine biologist Gary Shigenaka explores these questions as he reflects on the 25 years since the Exxon Valdez oil spill in the following Making Waves podcast from the National Ocean Service:

[NARRATOR] This all points back at what Gary says is the main take-away lesson after 25 years of studying the aftermath of this spill: the natural environment in Alaska and in the Arctic are rapidly changing. If we don’t understand that background change, then it’s really hard to say if an area has recovered or not after a big oil spill.

[GARY SHIGENAKA] “I think we need to really keep in mind that maybe our prior notions of recovery as returning to some pre-spill or absolute control condition may be outmoded. We need to really overlay that with the dynamic changes that are occurring for whatever reason and adjust our assessments and definitions accordingly. I don’t have the answers for the best way to do that. We’ve gotten some ideas from the work that we’ve done, but I think that as those changes begin to accelerate and become much more marked, then it’s going to be harder to do.”

Download: mw032114.mp3

Read a report by Gary Shigenaka summarizing information about the Exxon Valdez oil spill and response along with NOAA’s role and research on its recovery over the past 25 years.


After the Big Spill, What Happened to the Ship Exxon Valdez?

Wed, 03/19/2014 - 06:22

This is a post by Gary Shigenaka, a marine biologist with NOAA’s Office of Response and Restoration.

The last days of the Exxon Valdez: in the San Diego shipyard before the first name change. Photo from the collection of Gary Shigenaka, NOAA.

A popular myth exists that it is bad luck to rename a boat.  It is unclear whether this applies to “boats” as big as a 987-foot-long oil tanker, but it is possible that the ship originally known as the Exxon Valdez might be used to argue that the answer is “yes.”

When the Exxon Valdez was delivered to Exxon on December 11, 1986, it was the largest vessel ever built on the west coast of the U.S. On July 30, 1989, four months after it ran aground in Alaska’s Prince William Sound and caused the then-largest oil spill in U.S. waters, the crippled Exxon Valdez entered dry dock at National Steel and Shipbuilding in San Diego—its original birthplace.

The trip south from Prince William Sound had not been without incident. Divers discovered hull plates hanging from the frame 70 feet below the surface that had to be cut away, and a 10 mile oil slick trailing behind the ship for a time prevented it from entering San Diego Bay.

New Law, New Name

Exxon Mediterranean in Trieste, Italy, July 1991. Photo by Arki Wagner, used with permission.

Nearly a year and $30 million later, the ship emerged for sea trials as the Exxon Mediterranean.  The Exxon Valdez had suffered the ignominy—and corporate hardship—of effectively being singled out in U.S. legislation (the Oil Pollution Act of 1990 [PDF]) and banned from a specific U.S. body of water:

SEC. 5007. LIMITATION.

Notwithstanding any other law, tank vessels that have spilled more than 1,000,000 gallons of oil into the marine environment after March 22, 1989, are prohibited from operating on the navigable waters of Prince William Sound, Alaska.

(33 U.S.C. § 2737)

With this banishment institutionalized in U.S. law, Exxon Shipping Company shifted the operational area for the ship to the Mediterranean and the Middle East and renamed it accordingly.  In 1993, Exxon spun off its shipping arm to a subsidiary, Sea River Maritime, Inc., and the Exxon Mediterranean became the Sea River Mediterranean.  This was shortened to S/R Mediterranean.

In 2002, the ship was re-assigned to Asian routes and then temporarily mothballed in an undisclosed location.

A Ship Singled Out?

Exxon filed suit in federal court challenging the provisions of the Oil Pollution Act of 1990 that had banned its tanker from the Prince William Sound trade route.  In November 2002, the Ninth Circuit Court of Appeals upheld the Oil Pollution Act and its vessel prohibition provision (the Justice Department noting that to that time, 18 vessels had been prevented from entering Prince William Sound).  While Sea River had argued that the law unfairly singled out and punished its tanker, and that there was no reason to believe that a tanker guilty of spilling in the past would spill in the future, the three-judge panel disagreed unanimously.

The Oil Pollution Act of 1990, the landmark law resulting from the Exxon Valdez oil spill, legislated the phase-out of all single-hulled tankers from U.S. waters by 2015. On October 21, 2003, single-hulled tankers carrying heavy oils were banned by the European Union.  A complete ban on single-hulled tankers was to be phased in on an accelerated schedule in 2005 and 2010. There remains pressure to eliminate single-hulled tankers from the oil trade worldwide, so their days are clearly numbered.

In 2005, the S/R Mediterranean was reflagged under the Marshall Islands after having remained a U.S.-flagged ship for 20 years (reportedly in the hopes that it eventually would have been permitted to re-enter the Alaska – U.S. West Coast – Panama route for which it had been designed).  The ship’s name became simply Mediterranean.

In 2008, ExxonMobil and its infamous tanker finally parted ways when Sea River sold the Mediterranean to a Hong Kong-based shipping company, Hong Kong Bloom Shipping Co., Ltd. The ship was once again renamed, to Dong Fang Ocean, and reflagged under Panamanian registry.  Its days as a tanker also came to an end, as the Dong Fang Ocean was converted into a bulk ore carrier at Guangzhou CSSC-Oceanline-GWS Marine Engineering Co., Ltd., China.

The Dong Fang Ocean labored in relative anonymity in its new incarnation until November 29, 2010.  On that day, it collided with another bulk carrier, the Aali in the Yellow Sea off Chengshan, China. Both vessels were severely damaged; the Dong Fang Ocean lost both anchors, and the Aali sustained damage to its ballast tanks.  The Dong Fang Ocean moved to the port of Longyan with assistance by tugs.

The End Is Near

With this last misfortune, the final countdown to oblivion began in earnest for the vessel-formerly-known-as-Exxon-Valdez.  In March 2011, the ship was sold for scrap to a U.S.-based company called Global Marketing Systems (GMS). GMS in turn re-sold it to the Chinese-owned Best Oasis, Ltd., for $16 million.

Exxon Valdez/Exxon Mediterranean/Sea River Mediterranean/S/R Mediterranean/Mediterranean/Dong Fang Ocean/Oriental Nicety being dismantled in Alang, India, 2012. Photo by ToxicsWatch Alliance.

Intending to bring the Oriental Nicety, as it had been renamed yet one last time, ashore at the infamous shipbreaking beaches of Alang, Gujarat, India, Best Oasis was blocked by a petition filed by Delhi-based ToxicsWatch Alliance with the Indian Supreme Court on the grounds that the ship could be contaminated with asbestos and PCBs. ToxicsWatch Alliance invoked the Basel Convention, which restricts the transboundary movements of hazardous wastes for disposal. However, an environmental audit required by the court showed no significant contamination, and in July 2012, the Oriental Nicety was cleared to be brought ashore for its final disposition. The ship was reportedly beached on August 2, 2012.

Shanta Barley, writing for Nature, penned a wry obituary as a lead-in to her article about the last days of the ship:

The Oriental Nicety (née Exxon Valdez), born in 1986 in San Diego, California, has died after a long struggle with bad publicity.

Editor’s note: Use Twitter to chat directly with NOAA marine biologist Gary Shigenaka about the Exxon Valdez and its impacts on Alaska’s marine life and waters on Monday, March 24 at 3:00 p.m. Eastern. Follow the conversation at #ExxonValdez25 and get the details: http://1.usa.gov/1iw2Y6W.

Gary Shigenaka.

Gary Shigenaka is one of the original biological support specialists in the Emergency Response Division of NOAA’s Office of Response and Restoration. Even though his career with NOAA has spanned decades, Gary’s spill response experience began with the Exxon Valdez. He has worked countless spills since then, in the U.S. and internationally. He also currently oversees a number of response-related research efforts and represents the U.S. Department of Commerce on the Region 10 Regional Response Team.


NOAA and Private Industry Share Data to Improve Our Understanding of the Arctic

Mon, 03/17/2014 - 05:09

This is a post by the Office of Response and Restoration’s Acting Chief of Staff Kate Clark.

Ongoing and accelerated changes in the Arctic, including the seasonal loss of sea ice and opening up of the Arctic for navigation and commerce, are creating new opportunities for transportation and resource extraction along with a new venue for accidents, spills, and other environmental hazards. Although the Arctic is warming, it will remain a remote and challenging place to work. (NOAA)

Gathering data and information about Arctic air, lands, and waters is critical to NOAA’s missions. We work to protect coastal communities and ensure safe navigation, healthy oceans, effective emergency response, and accurate weather forecasting. But we need to be able to access remote areas of land and ocean to get that information in the first place. The expansive, harsh Arctic environment can make this access risky, expensive, and at times impossible.

The U.S. Arctic is a unique ecosystem that requires unique solutions for solving problems. To continue improving our understanding of the Arctic, NOAA must seek innovative ways to gather essential data about the climate, ocean, and living things in this part of our world.

The Rules of Sharing

We recognize that no single agency or organization has enough resources to do this alone. We have to collaborate our research efforts and share data with others working in the Arctic. An innovative agreement between NOAA and industry [PDF] was signed in August 2011 to help identify and pursue data needs in the Arctic.

This agreement between NOAA, Shell, ConocoPhilips, and Stat Oil sets up a framework for sharing Arctic data in five areas:

  • meteorology.
  • coastal and ocean currents, circulation, and waves.
  • sea ice studies.
  • biological science.
  • hydrographic services and mapping.

Before we incorporate this data into NOAA products and services, we will conduct stringent quality control on all data provided to us under this agreement. Having access to additional high-quality data will improve NOAA’s ability to monitor climate change and provide useful products and services that inform responsible energy exploration activities in the region.

We are committed to openness and transparency in our science.  In addition to reviews to ensure the quality of the data that we receive, NOAA will make the data obtained under this agreement available to the public.

Exactly what data is shared and how it is shared is laid out in a series of annexes to the overarching agreement. NOAA and the three companies have identified the need for at least three annexes. The first [PDF] and second [PDF] are complete. The third, which covers hydrographic services and mapping, is being drafted now.

Why Sharing (Data) Is Caring

This collaboration will leverage NOAA’s scientific expertise and these companies’ significant offshore experience, science initiatives, and expertise. By establishing this data-sharing agreement and the associated annex agreements, NOAA is better equipped to protect the Arctic’s fragile ecosystem. We will be providing the public—including energy companies, mariners, native communities, fishers, and other government agencies—with a stronger scientific foundation, which we believe will better support decision making and safe economic opportunities in this rapidly changing area.

NOAA envisions an Arctic where decisions and actions related to conservation, management, and resource use are based on sound science and support healthy, productive, and resilient communities and ecosystems.

We are working hard, in an era of shrinking budgets, to make sure that we are good stewards of the natural resources found in the Arctic. We will hold our industry partners to our high standards, and make sure that as we learn more, we also prepare for and minimize the risks involved in Arctic oil and gas development and increased maritime transportation.

We look forward to working with these industry partners to implement this data-sharing agreement.  This agreement is the type of innovative partnership we’d like to build with other entities willing to share data and work with us—leveraging the best of what we each can bring to the table.

Learn more about the work NOAA’s Office of Response and Restoration is doing in the Arctic.

Kate Clark is the Acting Chief of Staff for NOAA’s Office of Response and Restoration. For nearly 12 years she has responded to and conducted damage assessment for numerous environmental pollution events for NOAA’s Office of Response and Restoration. She has also managed NOAA’s Arctic policy portfolio and served as a senior analyst to the National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling.


What Are Kids Reading About Oil Spills?

Fri, 03/14/2014 - 09:32

This is a post by Dr. Alan Mearns, NOAA Senior Staff Scientist.

Credit: Carolien Dekeersmaeker/Creative Commons Attribution-NonCommercial 2.0 Generic License

What are your children and their teachers reading? We might want to pay closer attention. The stories we tell our children are a reflection of how we see the world, and we want to make sure these stories have good information about our world.

I occasionally accompany my wife, a preschool teacher, to local children’s bookstores, and more often than not, find books about oil spills and other disasters.  Recently, I took a closer look at the quality of the information found in a sampling of children’s books on oil spills.

An Oil Spill Ecologist Dives into Kids’ Books

So far, the eight or so books I’ve looked at focus on one of the two major oil spills in the American mind: the 1989 Exxon Valdez oil spill in Alaska or the 2010 Deepwater Horizon spill in the Gulf of Mexico.

A number are heart-warming stories about wildlife speaking about their experience in oil and the nice people who captured, cleaned, and released them. Birds, especially pelicans, and sea otters often play a starring role in telling these stories. Several present case histories of the oil spills, their causes, and cleanup. Some books place oil spills in the context of our heavy reliance on oil, but many ignore why there’s so much oil being transported in the first place.

One book’s color drawings show oil spill cleanup methods so well you can actually see how they work—and which I think could even be used in trainings on oil spill science.

Something that may not be top-of-mind for many parents but which I appreciate is the presence of glossaries, indices, and citations for further reading. These resources can help adults and kids evaluate whether statements about these oil spills are supported by reliable information or not.

Reading Recommendations

When reading a book—whether it is about oil spills or not—with kids you know, keep the following recommendations in mind:

  • Make sure the story informs, as well as entertains.
  • Ask where the “facts” in the story came from.
  • Look for reputable, original sources of information.
  • Ask why different sources might be motivated to show information the way they do.
  • Talk to kids about thinking critically about where information comes from.

Learn more about the ocean, pollution, and creatures that live there from our list of resources for teachers and students.

Dr. Alan Mearns is Ecologist and Senior Staff Scientist with the Office of Response and Restoration’s Emergency Response Division in Seattle. He has over 40 years of experience in ecology and pollution assessment and response, with a focus on wastewater discharges and oil spills along the Pacific Coast and Alaska. He has worked in locations as varied as the Arctic Ocean, southern California, Israel, and Australia, and has participated in spill responses around the U.S. and abroad.


Looking Back: What Led up to the Exxon Valdez Oil Spill?

Wed, 03/12/2014 - 13:39

In an ironic twist of fate, the Exxon Shipping Company’s safety calendar featured the T/V Exxon Valdez in March 1989, the same month the ship ran aground. Image: From the collection of Gary Shigenaka.

The Exxon Valdez oil spill occurred on March 24, 1989. This spill was a turning point for the nation and a major event in the history of NOAA’s Office of Response and Restoration. It also led to major changes in the federal approach to oil spill response and the technical, policy, and legal outcomes continue to reverberate today.

But before this monumental oil spill happened, there were a series of events around the world building up to this moment. Now, 25 years later, join us for a look at the history which set the stage for this spill.

1968

Atlantic Richfield Company and Humble Oil (which would later become Exxon) confirmed the presence of a vast oil field at Prudhoe Bay, Alaska. Plans for a pipeline were proposed but held up by various environmental challenges.

1973

The 1973 oil embargo plunged the nation into a serious energy crisis, and Alaskan oil became a national security issue. On November 16, 1973, President Richard Nixon signed the Trans-Alaska Pipeline Authorization Act, which prohibited any further legal challenges. This pipeline would connect the developing oil fields of Alaska with the port town of Valdez, where oil could be shipped out on tankers through the Gulf of Alaska.

1977

On August 1, 1977, the tanker ARCO Juneau sailed out of Valdez with the first load of North Slope crude oil.

1981

How prepared for oil spills was Valdez? Despite complaints from the State of Alaska, Alyeska Pipeline Service Company, the corporation running the Trans-Alaska Pipeline, decides to disband its full-time oil spill team and reassign those employees to other operations.

1982

The National Contingency Plan (NCP) is updated from the original 1968 version, which provided the first comprehensive system of accident reporting, spill containment, and cleanup in the United States. The 1982 revisions formally codified NOAA’s role as coordinator of scientific activities during oil spill emergencies. NOAA designated nine Scientific Support Coordinators, or SSCs, to coordinate scientific information and provide critical support to the U.S. Coast Guard, and other federal on-scene commanders.

1984

In May 1984, Alaska Department of Environmental Conservation (DEC) field officers in Valdez write a detailed memo warning that pollution abatement equipment has been dismantled and Alyeska, the pipeline company, does not have the ability to handle a big spill. This document will become part of the Congressional investigation of the Exxon Valdez oil spill.

Later in 1984, Alyeska conducts an oil spill response practice drill that federal and state officials deem a failure. In December 1984, DEC staffers in Valdez write another lengthy memo to their administrators detailing shortcomings in Alyeska’s spill response program.

1986

The T/V Exxon Valdez is delivered to Exxon in December of 1986 and makes its maiden voyage to Alaska. When the Exxon Valdez first arrived at the Port of Valdez later that month, the town celebrated its arrival with a party. “We were quite proud of having that tanker named after the city of Valdez,” recalls former Mayor John Devens.

1987

Captain Joseph Hazelwood becomes master of the Exxon Valdez, which then earns Exxon Fleet safety awards for 1987 and 1988.

In June 1987, the Alaska Department of Environmental Conservation approves Alyeska’s contingency plan without holding another drill. The plan details how Alyeska would handle an 8.4 million gallon oil spill in Prince William Sound. Alyeska says:

“It is highly unlikely that a spill of this magnitude would occur. Catastrophic events of this nature are further reduced because the majority of tankers calling on Port Valdez are of American registry and all of these are piloted by licensed masters or pilots.”

1988

The big news in Alaska is the lingering low price of oil. Nearly one in 10 jobs disappears from the Alaska economy. Oil output peaks on the Trans-Alaska Pipeline at 2.1 million barrels of oil a day.

January 1989

In January 1989 the Valdez terminal has a couple major tests of spill response capacity with two small oil spills, which draw attention to cleanup problems and the condition of their tanker fleet. Alyeska vows to increase its response capacity and decides to buy a high-tech, 122-foot-long skimmer, at a cost of $5 million. The skimmer is scheduled for delivery in August 1990. The company also replaces four 21-foot response boats and arranges to purchase thousands of feet of extra boom for delivery later in the year.

March 1989

On March 22, the Exxon Valdez arrives at the Valdez Marine Terminal, Berth 5 and begins discharging ballast (water used for balancing cargo) and loading crude oil. Loading is completed late on March 23 and a little after 9:00 p.m. the tanker leaves Valdez with 53 million gallons of crude, bound for California.

Early on March 24, 1989, a little over three hours after leaving port, the Exxon Valdez strikes Bligh Reef, spilling approximately 10.9 million gallons of oil into Prince William Sound.

Join us on March 24, 2014 at 12:00 p.m. Pacific/3:00 p.m. Eastern as we remember the Exxon Valdez oil spill 25 years later.

Use Twitter to ask questions of NOAA biologist Gary Shigenaka and learn about this spill’s impacts on Alaska’s environment.

Get the details.