
Communicating with ALOHA 
March 2009 

This document is for programmers and describes how to program your application to communicate with 
ALOHA.  It includes information about communicating with the Windows version of ALOHA using the 
NOAA_32.DLL or the Macintosh version of ALOHA using Apple Events. 

There are two common types of applications that wish to communicate with ALOHA: 

1. Mapping Applications can draw ALOHA’s threat zone and communicate threat point 
information.  Section 1 of this document describes how to read ALOHA's threat zone "status" 
file, how to communicate a user-specified threat point location to ALOHA, and how to ask 
ALOHA to notify your application about new threat zones and threat locations. 

2. Meteorological Applications can communicate meteorological data directly to ALOHA rather 
than have ALOHA take over the serial port.  Section 2 of this document describes the messages 
and formats for sending atmospheric information to ALOHA. 

Microsoft Windows Version: Communication via NOAA_32.DLL 
The process of inter-application communication in Windows is accomplished through the NOAA-
written 32-bit DLL called NOAA_32.DLL.  (Note: Versions of ALOHA prior to version 5.3 used a 16-
bit DLL called NOAA_16.DLL).  To communicate with other applications, you will need to use the 
following basic calls (see Appendixes 3 and 4 for more details): 

1. Register with the DLL by calling NERegister(). 
2. Send messages by calling NESendMessage() with the message string you wish to send.  See 

Appendix 2 for the details of message strings. 
3. Receive messages by calling NEGetNextMessage().  It is recommended that you call this 

function on idle.  When quitting your application, it is polite to say 'BYE ' to those applications 
you have sent messages to, and then unregister with the DLL by calling NEBye(). 

Macintosh Version: Communication via Apple Events  
The process of inter-application communication on the Macintosh is accomplished through Apple 
Events.  All messages are sent with event class 'NOAA' and apple event ID 'AEVT'.  We call these 
special apple events "NOAA messages".  Parameters for these NOAA messages are just Apple Event 
parameters and so are characterized by their 4-character OSType keyword.  The data for each keyword 
parameter is passed as typeChar data.  Which keyword parameters are present varies depending on the 
message, but the 'MSSG' keyword parameter is required and can be thought of as the message type.  We 
use the phrase an "HOLA message" for a class 'NOAA' apple event which has the value of "HOLA" in 
parameter specified by the keyword 'MSSG'. 

Your program will need to install an apple event handler to deal with 'NOAA' messages using something 
like 

AEInstallEventHandler(OSTYPE_NOAA,'AEVT', 
NewAEEventHandlerProc(HandleNOAAEvent), 0, false); 

and must retrieve parameters using a function using code like 
AEGetParamPtr(ae, keyWord, type, actualType, ptr, maxSize, actualSize); 

where type = typeChar and keyWord is a 4-character code such as 'MSSG'. 

1 



Section 1: ALOHA's Threat Zone and Threat Point Status 
Note: For more information about these status files, see the document called "ALOHA Pass Files". 

While running, ALOHA maintains a file giving the status of the threat zones being displayed to the user.  
ALOHA deletes this file as soon as the information (i.e., threat zone) no longer corresponds to what is 
being displayed to the user.  Your application should not display a threat zone whenever the file does not 
exist.  The threat zone file is described in Appendix 1. 

The coordinates of ALOHA's Threat Point can be requested from ALOHA using inter-application 
communication as described later in this document.  Your application can also ask ALOHA to use your 
values for the threat point coordinates using inter-application communication. 

Note: The Windows version of ALOHA maintains a threat point information file that contains only one 
line with two numbers in it, representing <Meters East> < Meters North> from the source point.  It is 
called "ALO_CLP.PAS." 

Requesting Notification from ALOHA 
In order to request notification messages from ALOHA, you must do the following: 

1. Register your application with NOAA_32.DLL (if using Windows version), 
2. Send ALOHA a notification request (NFTY message), and 
3. Remember to say 'BYE ' to ALOHA when quitting. 

Sending ALOHA a Notification Request 
To ask ALOHA to notify your application when threat zone or threat point coordinates change, send a 
'REGA' (register application) message to ALOHA and include a 'NTFY' parameter with any value 
starting with "y" (such as "YES").  As a shortcut, you can simply add the 'NTFY' parameter to an 
'HOLA' or 'OKHI'.  See Appendix 2 for a specific example of the register message. 

Terminating and Restarting Notifications 
To unregister, send a 'REGA' messages with 'NO' as the 'NTFY' parameter.  To register, just resend a 
'REGA' messages with 'YES' as the 'NTFY' parameter. 

Messages You Will Receive from ALOHA 
'BYE ' -- when ALOHA quits.  (Note: There is a space character in this 4-character message.) 
'NTF!' -- when the threat zone has changed, ALOHA will send you a 'NTF!' message with these 
parameters: 

'YRPS'  -- your PSIG 
'EDIS'  -- in theory, either "Y" or "N" indicating if a dispersion menu is enabled (i.e., if ALOHA 
has a source set and the user can choose the threat zone menu item). 
If there is a threat zone, the 'FILE' parameter gives the path name to the ALOHA threat zone file. 

If a valid threat point has been specified, the following parameters will be included: 
'MTRN'  -- the meters north for the threat point 
'MTRE'  -- the meters east for the threat point 

Other Optional Messages to ALOHA 
At anytime, you can send 'NTF?' to request the notification information from ALOHA.  Note: You need 
not have registered with ALOHA in order to do this. 

2 



Section 2: Meteorological Information 
Meteorological venders who find ALOHA's serial port implementation limiting can write applications 
that communicate SAM information directly to ALOHA. 

In order to use your application as the meteorological information provider for ALOHA, you must do the 
following: 

1. Register your application with NOAA_32.DLL (if using Windows version). 
2. Register your application with ALOHA by sending a 'REGA' message. 
3. Inspect messages sent by ALOHA to know if ALOHA is accepting SAM data. 

4. Send SAM information to ALOHA using 'SAM!' messages when ALOHA is accepting SAM 
data. 

5. Remember to say 'BYE ' to ALOHA when quitting. 

Registering Your Application with ALOHA 
Send ALOHA a 'REGA' (register application) message and include a 'REGA' parameter with value of 
'SAMA' (SAM application) indicating your application can communicate SAM information to ALOHA. 

If ALOHA has received this message before the user selects the SAM menu item, the user is asked if 
they want to use your application instead of the serial port.  If they chose your application, ALOHA will 
not read from the serial port, but will instead read the information from the 'SAM!' messages it receives. 

When registering a SAM application with ALOHA, you can include optional parameters to specify the 
SAM station height.  The 'WRFH' parameter is a string containing the value of the height and the 
'WRFU' parameter is used to specify the units for the height (one of the four values "METERS", 
"FEET", "INCHES", or "CENTIMETERS").  For example, 'WRFH' = "10.0" and 'WRFU' = "METERS". 

Messages You Will Receive from ALOHA 
'SAM!' -- a message to indicate your application should start or stop transmitting data.  You will receive 
this message with "START" in the 'DATA' parameter after the user selects the SAM menu item to 
specify that that SAM station should be used.  Your application will receive this message with "STOP" 
in the 'DATA' parameter when the user switches back to user-inputted atmospheric data. 

'BYE ' -- when ALOHA quits.  (Note: There is a space character in this 4-character message.) 

Sending Meteorological Data to ALOHA 
The 'SAM!' messages your application sends to ALOHA simply substitute for reading from the serial 
port.  The data string sent in the 'DATA' parameter is treated by ALOHA exactly the same as if the string 
was received through the serial port.  In particular, ALOHA expects the same format as used for SAM 
transmissions to the serial port. 

3 



Appendix 1: ALOHA's Threat Zone File 
The threat zone (pass) file is called "ALO_FTP.PAS" and contains drawing instructions (in meters east 
and north) using move to, line to, and arc commands.  The threat zone and the confidence lines are 
delineated via keywords FOOTPRINT and CONFIDENCE LINES.  The rest of the lines are 
distinguished by the first letter of the line. 

T -- very brief summary text displayed in a program like old CAMEO DOS 
t  -- the text ALOHA would add to the top of a printout of the threat zone 
M < x > < y > -- move to x y (in meters east, meters north from the source) (pen up) 
L < x > < y >  -- draw line to x y (in meters east, meters north from the source) 

The following is an example of an ALOHA "ALO_FTP.PAS" file with 3 threat zones and only one set 
of confidence lines.  Note: In versions of ALOHA prior to 5.4, the term footprint was used instead of 
threat zone, and FOOTPRINT is still used in the source code. 

T ALOHA heavy gas threat zone 
T CHLORINE 
FOOTPRINT [LOC: 0.5 ppm = AEGL-1(60 min)] [COLOR: YELLOW] 
M 4.5 -0.4 
L 4.5 0.0 
L 4.5 0.4 
 <more lines of data> 
L 16.7 -14.9 
L 4.5 -0.4 
CONFIDENCE LINES [LOC: 0.5 ppm = AEGL-1(60 min)] [COLOR: YELLOW] 
M -4.5 0.4 
L -22.7 -2.5 
L -36.4 -5.8 
 <more lines of data> 
L 21.9 -6.4 
L 4.5 -0.4 
t  Time: April 5, 2006 & 1423 hours CDT (using computer's clock) 
t  Chemical Name: CHLORINE 
t    Carcinogenic risk - see CAMEO 
t  Wind: 5 knots from 5° true at 3 meters 
t  THREAT ZONE:  
t    Model Run: Heavy Gas  
t    Red   : 1331 yards --- (20 ppm = AEGL-3(60 min)) 
t    Orange: 1.7 miles --- (2 ppm = AEGL-2(60 min)) 
t    Yellow: 2.8 miles --- (0.5 ppm = AEGL-1(60 min)) 
FOOTPRINT [LOC: 2 ppm = AEGL-2(60 min)] [COLOR: LIGHT ORANGE] 
M 4.5 -0.4 
L 4.5 0.0 
<more lines of data> 
L 29.2 -25.0 
L 16.7 -14.9 
L 4.5 -0.4 
FOOTPRINT [LOC: 20 ppm = AEGL-3(60 min)] [COLOR: RED] 
M 4.5 -0.4 
L 4.5 0.0 
L 4.5 0.4 
<more lines of data> 
L 24.8 -24.6 
L 16.7 -14.9 
L 4.5 -0.4 

See the document called "ALOHA Pass Files" for more information. 

4 



Appendix 2: Message String Format 
Messages are based on 4-character "messages" and 4-character "parameter keys".  The parameters or 
keys are separated by a vertical tab (ASCII character 11) which is denoted as <vt> below.  Message keys 
are all capitals (and case sensitive). 

Your application needs to identify itself with a 4-character "signature" and a 4-character 
"psuedoSignature". 

Note: On the Macintosh, applications have a hidden file attribute, called the signature, that the system 
uses to match files with their creator.  The psuedoSignature allows a single executable to have several 
different "identities" on the Macintosh whereas the signature is fixed and predetermined for such 
applications as HyperCard and FoxPro. 

In Windows, you are free to choose any signature and psuedoSignature you like. 

ALOHA's signature is ALH5. 

In Windows, messages are one long c-string of keys and values. 

The first few keys are required and must be in this order: 
MSSG = the message key (in the example below, let's use "REGA" register application) 
SIGN = your signature (in the example below, let's use "FRED") 
PSIG = your psuedoSignature (in the example below, let's use "PETE") 
XTRA = an extra string (you can usually pass "") 

These required values are followed by the optional parameter keys and values.  Different messages 
require different parameters.  The order of the optional parameters is not specified and it is 
recommended you put the short parameters toward the front of the message string to speed parsing. 

Example messages to ALOHA (which has a signature of "ALH5"). 

Call NESendMessage("ALH5",messageStringBelow,FALSE,NULL,NULL)); 

with the messageStringBelow. 

1. To register you application with ALOHA, send this message to 'ALH5': 
MSSG<vt>REGA<vt>SIGN<vt>FRED<vt>PSIG<vt>PETE<vt>XTRA<vt><vt>NTFY<vt>YES 

2. To get ALOHA to use your values for the Threat point, send ALOHA ('ALH5') a 'CDP!' message 
with the meters east 'MTRE' value and meters north 'MTRN' value. 
MSSG<vt>CDP!<vt>SIGN<vt>FRED<vt>PSIG<vt>PETE<vt>XTRA<vt><vt>MTRE<vt>35.2 
<vt>MTRN<vt>56.89 

An example of a notification message ('NTF!') you will receive from ALOHA is: 

MSSG<vt>NTF!<vt>SIGN<vt>ALH5<vt>PSIG<vt>ALHA<vt>XTRA<vt><vt>YRPS<vt>PETE 
<vt>EDIS<vt>Y<vt>MTRE<vt>1000<vt>MTRN<vt>-23.6<vt>FILE<vt>C:\ALOHA\ALO_FTP.PAS 

5 



Appendix 3: NOAA_32.DLL 

Sample Code for talking to ALOHA 

HINSTANCE gNoaaDllInst = 0; 
char gMySignatureStr[] = "MySg"; // a 4 character identifier you wish to use for 
your application 
HWND gMyMainWindowHWND = 0; 
char gMyMainWindowClassName[256]; 
 
long MyStartupTasks(HWND myMainWindowHWND, char * myMainWindowClassName) // call 
this when you program is starting 
{ 

long errorCode = 0; 
gMyMainWindowHWND = myMainWindowHWND;  // record the value of your main window 

handle 
if(myMainWindowClassName) 

strcpy(gMyMainWindowClassName,myMainWindowClassName); 
 

return errorCode; 
} 
void MyShutdownTasks(void) 
{ 

// say goodbye to ALOHA if it is running 
 

CallNEBye(); // this will unload the NOAA 32 dll 
} 
 
///////////////////// 
///////////////////// 
 
 
void LoadNoaaDll (void) 
{ 
   char dllPath[256]; 
 
   if(gNoaaDllInst) 
      return;  //if already loaded, don't reload 
 
  GetWindowsDirectory(dllPath, 255); 
  strcat(dllPath, "\\NOAA_32.DLL"); 
 
  gNoaaDllInst = LoadLibrary(dllPath); 
} 
 
void CallNERegister(void) 
{ 
   char sigStr[6]; 
   char fullPath[256]; 
   char humanName[64]; 
   FARPROC proc=NULL; 
   LoadNoaaDll(); 
   if((UINT) gNoaaDllInst > 32) 
     { 
        //we have the library 
        proc = GetProcAddress(gNoaaDllInst,"NERegister"); 
        if(proc) 
        { 

6 



 
           my_getindstring(humanName, 1000, 1); //ALOHA 
           (*proc)(   gMySignatureStr, 
                      gMyMainWindowHWND, 
                      gMyMainWindowClassName,  
                      "",             //messageStringForHola,unused 
                      "",          // human name,unused 
                      "",   //wakeUpTopicString,unused 
                      "",         // fullPath,unused 
                      0,          //SA_APPTASK,unused 
                      0,             //unused 
                      0);            //unused 
       } 
    } 
 } 
 
 
void CallNEBye(void) 
{ 
   char sigStr[6]; 
   FARPROC proc=NULL; 
   if((UINT) gNoaaDllInst > 32) 
   { 
      //we have the library 
      proc = GetProcAddress(gNoaaDllInst,"NEBye"); 
      if(proc) 
      { 
         (*proc)(  gMySignatureStr, 
                      gMyMainWindowHWND, 
                      gMyMainWindowClassName,  
                   ""); // messageStringForBye, unused 
      } 
      FreeLibrary(gNoaaDllInst); 
      gNoaaDllInst = NULL; 
   } 
} 
 
 
long CallNESendMessage(char* toSigStr, char* messageStr) 
{ 
 
   FARPROC proc=NULL; 
   long err = -1; 
   if((UINT)gNoaaDllInst > 32) 
   { 
      //we have the library 
      proc = GetProcAddress(gNoaaDllInst, "NESendMessage"); 
      if(proc) 
      { 
         err = (long)(*proc)(toSigStr, messageStr, FALSE, NULL, NULL); 
      } 
      return err; 
   } 
} 
 
 
BOOL CallNEAppIsRunning(char* toSigstr) 
{ 
   FARPROC proc=NULL; 
   BOOL isRunning = FALSE; 
   LoadNoaaDll(); 
   if((UINT)gNoaaDllInst > 32) 
   { 

7 



      //we have the library 
      proc = GetProcAddress(gNoaaDllInst, "NEAppIsRunning"); 
      if(proc) 
      { 
         isRunning = (BOOL)(*proc)(toSigStr); 
      } 
   } 
   return isRunning; 
} 
 
 
long HandleNEMessage(void) 
{ 
   // check for a message and handle it 
   FARPROC proc=NULL; 
   long err = -1; 
   long len; 
   long maxLength = 1023; 
   char msgStr[1024]=""; 
   LoadNoaaDll(); 
   if((UINT)gNoaaDllInst > 32) 
   { 
      //we have the library 
      proc = GetProcAddress(gNoaaDllInst, "NEGetNextMessageLength"); 
      if(proc) 
      { 
         len = (long) (*proc)(gMySignatureStr); 
         if(len > 0) 
         { 
            //we have a message 
            proc = GetProcAddress(gNoaaDllInst, "NEGetNextMessage"); 
            if (proc) 
            { 
              BOOL gotIt; 
              gotIt = (BOOL)(*proc)(sigStr, messageString, maxLength); 

  if(gotIt) { 
 // code to handle the message goes here 

 
  } 

            } 
         } 
      } 
   } 
   return err; 
} 
 

8 



Appendix 4: Messages to/from ALOHA 

Messages to ALOHA 
(all messages include 'SIGN', 'PSIG', 'MSSG' and 'XTRA' parameters) 

Message Parameters Description 
'BYE '  The friend application is quitting.  ALOHA will not send any more 

messages to it. 
'HOLA'  Initial greeting from a friend application.  The friend sends this message to 

ALOHA when it starts up and sees that ALOHA is running.  This tells 
ALOHA that the friend is alive and ready to handle messages.  ALOHA 
responds with an OKHI message.  If the sender is MARPLOT, ALOHA 
also sends a MENU message to install ALOHA's sharing menu. 

 'VERS' "2" or greater means you are using the updated IAC messages. 
 'NAME' Name of the friend application. 
 'PATH' Full path to friend application's executable file. 
 'DOC ' (optional) Full path to default document to be opened when ALOHA 

launches the friend. 
'OKHI'  Acknowledge receipt of HOLA from ALOHA.  The friend application has 

received an HOLA message from ALOHA, and is acknowledging so that 
ALOHA will know the friend is running.  If the sender is MARPLOT, 
ALOHA also sends a MENU message to install ALOHA's sharing menu. 

 'VERS' "2" or greater means you are using the updated IAC messages. 
 'NAME' Name of the friend application. 
 'PATH' Full path to the friend application's executable file. 
 'DOC ' (optional) Full path to default document to be opened when ALOHA 

launches the friend. 
'MENU'  Install sub-menu in ALOHA's sharing menu.  This adds a new sub-menu to 

ALOHA's sharing menu.  If a sub-menu with the same name already exists, 
it is replaced with the new menu.  (Thus, a friend application can send a 
MENU message each time it greets ALOHA, without worrying about 
duplicating the menu.)  Menus installed in ALOHA are automatically saved 
by ALOHA.  They can be used later, even when the friend application is 
not running.  In this case, ALOHA launches the friend application before 
sending it the MHIT message. 

 'VERS' "2" or greater means you are using the updated IAC messages. 
 'NAME' Name of menu. 
 'ITMS' Return-delimited string of menu items. 
 'PATH' Full path to the friend application's executable file. 
 'DOC ' (optional) Full path to default document to be opened when the friend is 

launched. 

9 



 

'FRWD'  Your application can ask ALOHA to bring it to the foreground using this 
message.  There are a number of technical issues involved in getting an 
application to come automatically to the foreground.  These issues are 
different for each platform/system.  In some cases, when an application 
wants to bring some application (often itself) to the foreground, it is easier 
(and sometimes more polite) to ask another application to do the job. 

 'WHO ' Signature of application to bring forward (usually the sending app itself). 
 'NAME' Name of application to bring forward; in Windows, NAME should be the 

title of your main window, or the name of your main window class. 
  NOTE: On the Macintosh, it is sometimes better to use the Notification 

Manager and let the user bring you forward. 
'CHM?'  A request for ALOHA to send a CHM! message indicating the current 

ALOHA chemical. 
'CHEM'  A request for ALOHA to select a chemical. 
 'NOAA' (optional ) A string containing the NOAA number of the chemical. 
 'CAS ' (optional ) A string containing the CAS number of the chemical (as a 

number with no dashes).   
 'NAME' (optional ) A string containing the name of the chemical. 
'CTY?'  A request for ALOHA to send a CTY! message indicating the current 

ALOHA city. 
'INFO'  A request for ALOHA to come forward and show information on the threat 

zone or the threat point. 
 'LIST' If this is "2", the concentration window is presented, otherwise the text 

summary window is presented. 
'NTF?'  A request for ALOHA to send a NTF! message indicating the current threat 

zone information. 
'REGA'  A request for ALOHA to register an application as a "Mapping" or "SAM" 

application (based) on the REGA parameter. 
 'REGA' Specifies the type of application.  One of the two values: MAPA (for 

Mapping application) or SAMA (for SAM application) 
 'WRFH' Optional parameter (wind reference height) for SAM application.  A string 

giving the value of the height of the station (e.g., "3.0").  Note: Units are 
specified by the 'WRFU' parameter. 

 'WRFU' Optional parameter (wind reference height units) for SAM application.  A string 
specifying the units for the 'WRFH' parameter for SAMA case, one of the four 
values: METERS, FEET, INCHES, CENTIMETERS. 

'SAM!'  A request for ALOHA to use the given atmospheric data. 
 'DATA' A string using exactly the same format as would be transmitted by a SAM station 

through the serial port. 
'VER!'  A response to ALOHA's 'VER?' message indicating the current version of 

sending application. 
 'VNUM' A string with the version number (e.g. "3.3.3" for MARPLOT 3.3.3). 

10 



Other Messages Sent to ALOHA by MARPLOT 

Message Description 
MHIT ALOHA assumes it is its menu in MARPLOT, but does not check the sender. 
CPT! MARPLOT click point response to ALOHA's 'CPT?' message.  ALOHA assumes 

that the sender was MARPLOT, but that is not checked. 
IMP! A response to ALOHA's 'IMP2' import message.  ALOHA just records the IDS. 
OVL! A response to ALOHA's 'MKOV' make overlay (layer) message.  ALOHA simply 

records the ID. 
OBID A response to ALOHA's 'IMPT' import message.  ALOHA just records the IDS. 
INFO ALOHA checks that the sender is MARPLOT, then checks to see if there is one 

object and that its data matches threat point.  If so, shows the Threat at Point 
window, else it shows the Text Summary. 

CLOS If from MARPLOT, ALOHA clears the global IDs. 
ULK? ALOHA sends MARPLOT an alert saying you cannot unlink ALOHA objects.  

(This is no longer used.) 

11 



Messages Sent by ALOHA 
(all messages include 'SIGN' ('ALH5'), 'PSIG' ('ALHA'), 'MSSG' and 'XTRA' parameters) 

Message Parameters Description 
'BYE '  ALOHA is quitting.  This is to inform you that if you plan to send ALOHA 

any more messages, you will have to wait until it gets started again (perhaps 
by your launching it) and sends you an HOLA message.  This message is 
sent to all friend applications that are currently running. 

'HOLA'  Initial greeting from ALOHA.  ALOHA sends this message to all running 
friend applications when it starts up.  This tells friend applications that 
ALOHA is alive and ready to handle messages.  ALOHA's friend 
applications are MARPLOT, CAMEO Chemicals, and any application that 
has ever said HOLA to ALOHA.  The list of friends is saved in the 
ALOHA.PRF file. 

 'NAME' "ALOHA" 
 'PATH' Full path to ALOHA. 
 'DOC ' Empty string; provided for consistency with other applications. 
 'VERS' "2" 
 =====> When you get an HOLA message from ALOHA, you should respond with 

an OKHI message. 
'OKHI'  Acknowledge receipt of HOLA.  ALOHA has received an HOLA message 

from an application that just started up and is acknowledging so that the 
other application will know ALOHA is alive.  You should treat an incoming 
OKHI message the same as an incoming HOLA message; they give the same 
information but you will get one or the other depending on whether your 
application or ALOHA is started first. 

 'NAME' "ALOHA" 
 'PATH' Full path to ALOHA. 
 'VERS' "2" 
 'DOC ' Empty string; included for consistency with other applications. 
'FRWD'  A request to bring an application forward.  ALOHA will only ask you to 

bring either your own application forward or to bring ALOHA forward.  
There are a number of technical issues involved in getting an application to 
come automatically to the foreground.  These issues are different for each 
platform/system.  In some cases, when an application wants to bring some 
application (often itself) to the foreground, it is easier (and sometimes more 
polite) to ask another application to do the job.   

 'WHO ' Signature of application to bring forward. 
 'NAME' Name of application to bring forward; in Windows, NAME should be the 

title of your main window, or the name of your main window class. 
  NOTE: On the Macintosh, it is sometimes better to use the Notification 

Manager and let the user bring you forward. 

12 



'CDP!'  Tells ALOHA to use this as the Threat Point (previously known as the 
Conc/Dose Point). 

 'MTRE' A string containing the meters east (decimal value). 
 'MTRN' A string containing the meters north (decimal value). 
'CHM!'  The answer to a request for ALOHA to indicate which chemical is selected 

in ALOHA. 
 'NOAA' A string containing the NOAA number of the chemical.  (User-added 

chemicals have 0 for a NOAA number.) 
 'CAS ' A string containing the CAS number of the chemical (as a number with no 

dashes).  (User-added chemicals have 0 for a CAS number.) 
 'NAME' A string containing the name of the chemical. 
'CTY!'  The answer to a request for ALOHA to indicate which city is selected in 

ALOHA. 
 'NAME' A string containing the name. 
 'LATD' A string containing the degree value of the latitude (integer value). 
 'LATM' A string containing the minute value of the latitude (decimal value). 
 'LNGD' A string containing the degree value of the longitude (integer). 
 'LNGM' A string containing the minute value of the longitude (decimal value). 
'NTF!'  Notification of a change in the threat zone.  See Section 1. 
'RIDS'  Sent to CAMEO Chemicals when the user asks to view chemical datasheet 

information on the chemical currently selected in ALOHA. 
 'NOAA' A string containing the NOAA number of the chemical.  (User-added 

chemicals have 0 for a NOAA number.) 
 'CAS ' A string containing the CAS number of the chemical (as a number with no 

dashes).  (User-added chemicals have 0 for a CAS number.) 
 'NAME' A string containing the name of the chemical. 
'SAM!'  Start or stop sending SAM data to ALOHA. 
 'DATA' A string containing 'START' to start sending data and 'STOP' to stop 

sending data to ALOHA. 

Other Messages Sent to MARPLOT by ALOHA 

See the MARPLOT tech doc for more information. 
 

Message Description 
CPNT To get MARPLOT's current click. 
DELO To delete our objects. 
DLOV To delete the ALOHA overlay. 
IMPT To display the threat zone etc. 
MENU To install a sharing menu in MARPLOT. 
MKOV To create the ALOHA overlay and get the overlay ID. 

13 


	Communicating with ALOHA
	Microsoft Windows Version: Communication via NOAA_32.DLL
	Macintosh Version: Communication via Apple Events
	Section 1: ALOHA's Threat Zone and Threat Point Status
	Requesting Notification from ALOHA
	Sending ALOHA a Notification Request
	Terminating and Restarting Notifications
	Messages You Will Receive from ALOHA
	Other Optional Messages to ALOHA

	Section 2: Meteorological Information
	Registering Your Application with ALOHA
	Messages You Will Receive from ALOHA
	Sending Meteorological Data to ALOHA

	Appendix 1: ALOHA's Threat Zone File
	Appendix 2: Message String Format
	Appendix 3: NOAA_32.DLL
	Sample Code for talking to ALOHA

	Appendix 4: Messages to/from ALOHA
	Messages to ALOHA
	Other Messages Sent to ALOHA by MARPLOT
	Messages Sent by ALOHA
	Other Messages Sent to MARPLOT by ALOHA





