How to Use the Chemical Aquatic Fate and Effects Database: CAFE, Version 1.2

May 2016

U.S. DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration National Ocean Service Office of Response and Restoration Emergency Response Division How to Use the Chemical Aquatic Fate and Effects Database: CAFE, Version 1.2 May 2016

U.S. DEPARTMENT OF COMMERCE Penny Pritzker Secretary, U.S. Department of Commerce

Dr. Kathryn D. Sullivan Under Secretary of Commerce for Oceans & Atmosphere and NOAA Administrator

Dr. W. Russell Callender Assistant Administrator for Ocean Services and Coastal Zone Management, National Ocean Service

How to Use the Chemical Aquatic Fate and Effects Database: CAFE, Version 1.2

The Chemical Aquatic Fate and Effects (CAFE) database is a software program you can use to estimate the fate and effects of thousands of chemicals, oils, and dispersants. It serves as a tool to help responders in their assessment of environmental impacts from chemical or oil spills into aquatic environments.

Using CAFE, you can choose between four different spill scenarios: chemical, oil only, dispersant only, and dispersants mixed with oil. You can also add your own toxicity data, and view short-exposure hazard concentration estimates (Short Exposure Risk Reports) that were derived for selected chemicals using empirical toxicity data.

Data in CAFE are presented in two modules, which can provide complementary information to responders:

- Aquatic Fate module
- Aquatic Toxicity (Effects) module

This document provides a brief overview of how to navigate and perform queries in CAFE. You are encouraged to review the CAFE User's Manual for additional details, as well as the Quality Assurance/Quality Control (QA/QC) Plan contained in the manual (Appendix A).

Development of CAFE and its application for use in spill response is described in the following paper: Bejarano, A. C., Farr, J. K., Jenne, P., Chu, V. and Hielscher, A. (2016), The Chemical Aquatic Fate and Effects database (CAFE), a tool that supports assessments of chemical spills in aquatic environments. Environmental Toxicology and Chemistry, 35: 1576–1586.

Performing Queries in CAFE

Shown below are instructions and screenshots that will guide you through some sample queries in CAFE.

Before performing queries in CAFE, note that:

- CAFE is a repository of data that will continue to be updated as additional sources of data are identified.
- Data queries and interpretation are the sole responsibility of you, the user.
- The CAFE development team assumes no responsibility for the use or misuse of the data and information contained within the tool.

Disclaimer

By reading this disclaimer and clicking OK, you show that you understand the potential pitfalls of this database, and more importantly, that data interpretation is at your own risk.

Getting Started

Home. To begin, choose between four different spill scenarios: Chemical, Oil only, Dispersant only, or Dispersant and oil. The Chemical scenario allows you to view both fate and toxicity effects; whereas the Oil and Dispersant scenarios only allows you to view effects.

1. Home	2. Chemical	3. Species	4. Life Stage	5. Endpoint	6. Water Type	7. Test Duration	Plot Graph Clear All Selections
Chemical Select this sce in a chemical Oil only Select this sce	rio from the options listed be al nario to predict the fate and spill. (does not include oil, d nario to predict the effects of	effects of a chemical lispersants, and chem	(e.g. benzene, amm ically dispersed oil).	onia, etc.)	available in ADIOS.	User-Added Data View User-Added Toxicity Data User-Added Data Entry Screen	User Manual User Manual How to Use CAFE View Short Exposure Risk Reports
O Disperse Select this sce	nario to predict the effects of ant and oil nario to predict the effects of No fate data are available for	f a particular oil mixed chemically dispersed Warning: User sh	d with a particular dis oil.	spersant or chemically r Manual/Quality A		CAFE Trai CAFE Basics	ining Videos Short Exposure User-Added Data
					Next	Database. Version 1.2 National Oceanic Administration, Offic	te and Effects (CAFE) 2 [Computer Software]. and Atmospheric e of Response and ncy Response Division.
Chemical	Name CAS #	Species N Common Scientific	ame Group		Life End Stage Point	Water Time Type Duration (hrs)	ځ

Chemical Scenario

For a Chemical scenario, choose to search by name or by Chemical Abstracts Service (CAS) number, <u>without</u> dashes. If you search by name, you can search for chemicals that exactly match, start with, end with, or contain your chemical of interest.

Choose your Search Mode	Start a New Chemical Search at any time
Search Mode: exactly matching ostarts with oends with oanyw	nore in prove can be chain as needed during chemical and species searches.
1. Search for Chemical (by Name or CAS Number) Name (not case sensitive): benzene	New Chemical Search
CAS Number:	

Next, choose to view the **Fate** (Aquatic Fate module) or **Effects** (Aquatic Toxicity module) of the search result(s).

Aquatic Fate Module

There are three sub-modules within the Aquatic Fate module, shown by three buttons at the top of the screen:

- 1. Structure and Physical Properties
- 2. Environmental Fate
- 3. Analytical Methods and Uses

Printing is available on all three sub-modules.

Structure and Physical Properties sub-module. Help buttons, **(20)**, are located at the side of the data to help guide you.

	Home Return	Physical Properties	Envir	onmental Fate	Analytic Meth	Structure c searched chemical	of				
	Fate Data - Physical Che Properties	mical Name Benzene				CAS	71432				
Hazards of	Ga Color/Form Rh Co	omatic odor soline-like odor; rather pleasant aromatic ombic prisms lorless to light-yellow liquid (a solid below			Structu						
searched	Skin, Eye, and Ski Respiratory Se	Skin, Eye, and Skin irritant. Respiratory Irritation Skin irritant upon occupational exposures of >60 ppm for three weeks.									
	Boiling Point (°C) 80	° C (Experimental)	0	Flash Poir	t 12°F (-11°C) (Close	d Cup) (Experimental)					
	Melting Point (°C) 5.5	5° C (Experimental)	0	Ionization Potential (e	/) 9.24 eV		0				
	Density			Hvap (cal/g							
	Autoignition Temp. 92	()	0		I) .00555 at 25°C (E)	1 2	0				
	Vapor Density 2.8		0		w 2.13 (Experimental)		000				
		504 cP at 25°C	0) 94.8 mm Hg at 25°						
	Explosive/Flammable Limits Lo	wer 1.4%; Upper 8.0%	0	water Solublinty (mg/l	.) 1790 at 25°C (Exp	erimental)					
		Physical	Propert	ies Data							

Environmental Fate sub-module

Help buttons, 🙆, are located at the side of the data to help guide you. There are also some Environmental Explanations that summarize the data in paragraph form.

	Home Return	F	Physical Properties Environme Detailed Environmental
	Fate Data - Environmental Chemical Na Properties	ame Ben	Explanations in paragraph form
	Soil Adsorption	0	Environmental Explanations
	Estimated Koc 165.5 Primary Biodegradation Estimated Biodegradation Timeframe days-w	veeks	If released to the environment, Benzene is expected to be found predominantly in water (48.1%). It is also expected to be found in soil (14.1%), air (37.6%) and sediment (.22%). SOIL - In soil, Benzene is expected to have moderate mobility based upon a KOC of 165.5 (Estimated).
Environmenta	N	er 🕜	- Benzene may volatilize from dry soil surfaces based upon a vapor pressure of 94.8 mm Hg (Experimental). - Benzene may volatilize from moist soil surfaces based upon a Henry's Law constant of .00555 atm-cu m/mole (Experimental).
Fate Data	Har life from Model Lake (hours) 84.96 Estimated Hydrolysis at pH=7		WATER - Benzene may volatilize slowly from water surfaces is expected to be an important fate process based on a Henry's Law constant of .00555 atm-cu m/mole (Experimental).
	Half-life (days)		- Estimated volatilization half-lives for a model river and model lake are 1 hours and 84.96 hours, respectively.
	Estimated Atmospheric Half-life (days) 5.486	0	- In water, Benzene is not expected to adsorb to suspended solids and sediment based upon a KOC of 165.5 (Estimated). The Aqueous Hydroysis Rate Program (HYDROWIN) estimates aqueous hydrolysis rate constants for only certain chemical classes:
	Estimated Environmental Partition Percent to air 37.6	ning 🛛	esters, carbamates, epoxides, halomethanes and selected akyl halides. HYDROWIN estimates acid-and base-catalyzed rate constants; it does not estimate neutral hydrolysis rate constants. - HYDROWIN could not estimate a hydrolysis half-life for Benzene. This chemical may be stable with respect to hydrolysis. However,
	Percent to water 48.1		the inability of HYDROWIN to estimate a hydrolysis half-life does not necessarily mean that Benzene is hydrolytically stable, it may contain functional group(s) for which HYDROWIN cannot estimate a hydrolysis rate constant.
	Percent to soil 14.1 Percent to sediment .219		AIR The Atmospheric Oxidation Program for Microsoft Windows (AOPWIN) estimates the rate constant for the atmospheric, gas-phase reaction between photochemically produced hydroxyl radicals and organic chemicals. It should be noted that if a compound does not
	Estimated Wastewater Removal (9 Total Removed 76.22	%) 🕜	reaction between photochemically produced hydroxyl radicals and organic chemicals. It should be noted that if a compound does not exist in the vapor phase in the environment (VP <1E-8 mm HG), reaction with photochemically generated hydroxyl radicals will not be an important fate process. - Benzene will exist solely as a vapor in the atmosphere based upon a vapor pressure of 94.8 mm Hg (Experimental).
	Due to Biodegradation 21.66 Due to Sludge Adsorption .97		 Derize ite will exist solely as a vapor in the achievent pased upon a vapor pressure of 94.6 mining (experimental). The half-life for the reaction of Benzene with photochemically generated hydroxyl radicals is 5.486 days, assuming a hydroxyl radical concentration of 1.5E+6 OH/cm3 and a 12-hour day.
	Due to Volitilization 53.59		

Analytic Methods sub-module

The upper section of the screen shows the methods used to measure the chemical. Click on a Method Number with an associated media type. A description of the method will be shown in the Method Type text box. The lower section of the screen shows the uses for the chemical. Click on a Use in the lower left and an expanded description will be shown in the Use text box.

Aquatic Toxicity Module: Data Selection Screens

There are several sequential steps to complete before proceeding to test duration.

Species – Select species by taxonomic group and/or select individual species before proceeding to Life Stage(s) Selection.

Life Stage(s) – Select from available life stages for the selected species before proceeding to the Endpoint(s) Selection.

Endpoint(s) – Select Endpoint(s) before proceeding to the Water Type Selection. Notice how there are no LOEC or NOEC data, so those options are grayed out.

Water Type(s) – Select Water Type(s) before proceeding to the Test Duration.

Notes:

- A minimum of 5 species is required for curve fitting.
- The number of toxicity records decreases as more parameters are selected.
- All or individual parameter selections can be cleared at any time.
- When specific data selections are not available, those options are grayed out (see example on End Point(s) screen below).
- Green dots denote species-parameter selections for which data are available.

Also note that going back steps will clear all settings you have made, based on your previous selections.

On the Species step, there are *three steps* to complete before you proceed to the next step (Life Stage). On all other steps, there are *two steps*.

- 1. Select Species Groups to view which species in the selected groups are available.
- 2. Select all or individual species.
- 3. Click the button, Life Stage Selection, in the upper right to proceed to the next step.

1. Home	2. Chemica	I	3. Species	4. Lif	e Stage	5. Endp	point	6.	Wate	r Typ	е	7. Te	est Du	uratio	n		Plot raph		F	ear All ctions
N	1. Select Species Group(s) Number Select Species □ Coral □ Crustacean □ Fish □ Mollusk □ Other □ Group(s) Hover over option to show toxicity record count □ Group(s) □ Group(s) □ Group(s)							eed	to:	Life	e Stade	e Sele	ction							
N .	2. Select Species A minimum of 5 species is required for curve fitting. Number of toxicity records:																			
or click Select		election			record cou	unt availa	<i>ble for</i> Li	the giv ife Sta	en para ge	meter a	and spe	ecies End	ooint		Wat Typ	pe	Dur (ł	est ation 1rs)	- PP	
Common Na	ime	Scient	ific Name		Species Grou	Jp Embryo	Larva	Juvenile	e Adult	Unk.	LC50	EC50	LOEC	NOEC	Salt	Fresh	24 48	3 72 96	ΗМ	
African Claw	ed Frog	Xenop	us laevis		Other															
Aquatic So	Select All	or	aquaticus		Crustacean															
Arctic Gray			llus arcticus		Fish															
Bluegill	Clear All		is macrochirus		Fish															
Brine Shrim	species		a salina		Crustacean												•			
Brine Shrim	opecies		a sp.		Crustacean															
Calanoid Co	pepod	Diapto	mus forbesi		Crustacean															
California Ba	y Shrimp	Crang	on franciscorum		Crustacean															
Carp		Leucis	cus idus ssp. mela	notus	Fish															
Channel Cat	fish		us punctatus		Fish															
		Oncor	hynchus tshawyt	scha	Fish			٠			٠									
rat	Select		serrata		Crustacean															
I K i	ndividual	Palaen	nonetes pugio		Crustacean												•			
Damselfh	species		ira elegans		Other															
Diatom	species		siosira pseudonan	a	Other									_		-				
Dolly Varder	ו		nus malma		Fish					-		-					-			
Dover Sole		Solea s			Fish											-				
	Or Edible Crab		r magister		Crustacean					Z	\mathbf{X}				•					
Fathead Min		<u> </u>	hales promelas		Fish															
			promotion of		1. 2011	1			umr by p				DXIC	ity		-				

The Life Stage(s), Endpoints, and Water Type selection steps are listed below.

Test Duration and Applicability Selection

There are two steps to complete before data are plotted.

Test Duration – Select **one** Test Duration before proceeding to plot the graph. Note that the numbers of records displayed are the records that correspond to the selected test duration.

Data Applicability – Each data source was given an applicability score (High, Moderate, or Low) to spill response. Select the Data Applicability (optional) prior to plotting the data.

High applicability

- Toxicity data with reported concentrations on the basis of measured concentrations (Test method: M)
- Toxicity data from laboratory setting performed under flow-through conditions (Exposure Type: F)
- Reported \geq 90% active ingredient purity

Moderate applicability

- Toxicity data with reported concentrations on the basis of measured concentrations (Test method: M)
- Toxicity data from laboratory setting performed under static or static renewal conditions (Exposure Type: S, R)
- Reported 75-<90% active ingredient purity

Low applicability

- Toxicity data with reported concentrations on the basis of nominal or unmeasured concentrations (Test method: N, U)
- Toxicity data not clearly stating if the reported concentration are nominal, unmeasured, or measured (Test method: NR)
- Toxicity data not clearly stating the laboratory conditions used during testing (Exposure Type: NR)
- Reported <75% active ingredient purity

Notes

An additional screen summarizes all the selected parameters in text form. Printing is available.

⊃24 ○48	Iration (hours) 2.Select Dat 72 096 ⊠High ⊠Mo rer over option to show toxicty record count	oderate ⊠Low	Number of to		ear All On		. Proce	ea to	: [Pio	t Graph
			Life Sta	icates tox		city record available End Poin		<i>cted t</i> Water Type	Test Duration (hrs)	Data Applic.
Common Name	Latin Name Asellus aguaticus	Species Group Emb Crustacean	Numb	or of	tov	city r	ocor	de	24 48 72 9	D6 H M L
Crab	Scyla serrata	Crustacean						us		
Great Pond Snail	Lymnaea stagnalis	Mollusk	show	n on 1	the d	araph				
Green Algae		Other				J. a.p				
farine Bivalve	Katelysia opima	Mollusk								
Scud	Gammarus fossarum	Crustacean								
inail	Amphimelania holandri	Mollusk								
Striped Bass	Morone saxatilis	Fish			•		(•	• •	
īgerfish	Terapon jarbua	Fish	•		•		(•		

Graph Output – The Result

The selection screens generate Species Sensitivity Distributions (SSD). SSDs describe the sensitivity of aquatic species to the exposure media, by ranking the relative sensitivity of the species tested from the least to most sensitive.

- The name of the chemical, oil or dispersant and the exposure duration (in parenthesis) are labeled as the title of the SSD
- The x-axis represents the concentration in µg/L (plotted on a log scale) required to adversely affect a unique species and the y-axis represents the percentage of species.
- Each point on the curve represents data available for a unique species, and each open circle represents the geometric mean of all the toxicity data available for a unique species.
- SSDs can be used to derive a protection threshold or a hazard concentration (HC) as a measure of risk. Here the 1st and 5th percentiles of the SSD¹ (HC1 and HC5, respectively; in μ g/L) are used as benchmark concentrations under the assumption that these would be protective of 99% and 95%, respectively, of the species on the SSD.
- HC1 and HC5 values are displayed and automatically updated with every query.

¹ While there is debate in the scientific literature regarding the appropriateness of one versus another HC percentile, the HC5 selected here was chosen because this is the most commonly used percentile, while a lower percentile (HC1) would offer an additional safety factor preferable when dealing with very highly toxic chemicals.

- The colors in the Toxicity key represent the relative toxicity of the exposure media².
- All final query plots can be printed.

Data Limitations

- This version of CAFE only provides data for acute 24, 48, 72, and 96 hour exposures. No other time durations are available in this version.
- Some chemicals have limited acute toxicity data available; not enough to generate SSDs.
- Most of the toxicity tests were done in a laboratory setting. These conditions do not accurately simulate real testing conditions.
- The current version of CAFE does not contain confidence intervals associated with the mean response of the SSD curve, and consequently, the HC1 and HC5 values are only point estimates. The user is encouraged to support these values by reviewing additional data sources external to CAFE.
- The current version of CAFE does not contain a goodness-of-fit test. The user is encouraged to be critical of the fitted curve.
- SSDs are not indented to address population, community, or ecosystem level impacts. The user is assumed to understand the strengths and limitations of SSDs and their associated HC estimates.
- The user is entirely responsible for interpreting the plotted SSD.

² Source: <u>http://www.epa.gov/oppefed1/ecorisk_ders/toera_analysis_eco.htm#Ecotox</u>

There are a number of options that facilitate data visualization, including: shading by attributes, display of all values or just geometric means, viewing species by common or scientific names. You can also view a selection summary of your data by clicking the Show Selection Summary button on the bottom right of the SSD.

You can also shade by outliers. The logistics curves are computed using the geometric means. In certain cases, the curves were being skewed by outlier geometric means. The curves do not include these points in the computations, but the points are still displayed on the graph. When the user displays the geometric means only, the outlier points are shaded. Most chemicals don't have outliers, but some do. See the example, below.

Each individual species plotted on the SSD has an associated report displaying important details from the original data source. Useful information includes chemical characteristics (e.g., grade, purity), test conditions (e.g., water type, exposure duration), species (e.g., scientific name, life stage tested), test concentration (e.g., analytical method, concentration units), effects results (e.g., reported effect) and endpoint (e.g., reported metric).

Click on the i button next to each species to view the associated report (original studies). Then click on any of the numbered reports by data point. The source of the data point is listed next to each report button.

Oil only Scenario

After selecting an oil, the toxicity data selection screens are shown. There are three steps to complete before proceeding to the Species Selection. The number of Toxicity records adjusts, based on your selections.

1. Hol	our Search M	lode	e 5. End Point	6. Water Ty	pe 7. Test	Duration Plot Grap	
earch Mode: 🔘 exactly matcl	hing starts with O	ends with O anywh	nere in Oil only	Clear button		Proceed to:	Species Selection
1. Select Oil Enter search criteria (not case Click "Show All" button to view		utton, click once on de lispersant toxicity record	ds.	w. Clear Sel	•	ure Condition(s) conditions available for to	he
Oil Name	Show All Oi	l Name	#	-	Constant static	# of toxicity re Spiked, flow-t v-through Field	
Oil Search B			lect All an buttons		Static renewal	Select Al	I Clear All
Select from analytical methods		<i>oil</i> Travimetry NF		ords: Clear All		t any point	, selections
3. Select Analyte(s) (Select from analytes available 1	for the selected oil]NAM	# of toxicity reco	ords:		an be clear	-
Dispersant/Oil Name CA		Species Name	Select All	Clear All	End Wate		ons On This Screen
		Common Latin		Stage	Point Type		Selection Summary

Oil – Search for the desired oil using the search bar. Click once on the desired name in the Search Results.

Analytical Method(s) – Select Analytical Method(s) used to quantify the oil. NR stands for Not Recorded.

Analyte(s) – Select Analyte(s) measured in the chemical analysis. OL stands for Oil Loading and NAM stands for No Analyte Measured.

Exposure Condition(s) – Select Exposure Condition(s) used in the toxicity experiment(s).

Dispersant only Scenario

After selecting a dispersant, the toxicity data selection screens are shown. There are two steps to complete before proceeding to the Species Selection. The number of Toxicity records adjusts, based on your selections.

Dispersant – Search for the desired dispersant using the search bar. Click once on the desired name in the Search Results.

Analytical Method(s) – Select analytical method(s) used to quantify the dispersant.

Exposure Condition(s) – Select exposure condition(s) used in the toxicity experiment(s).

Dispersant and Oil Scenario

After making a dispersant and oil selection, the toxicity data selection screens are shown. There are six steps to complete before proceeding to the Species Selection. The number of Toxicity records adjusts, based on your selections.

Choose your Search Mode	Plot Clear
1. Home 2. D Isant & oil 3. Species	4. Life Stage 5. End Point 6. Water Type 7. Test Duration Graph Selections
Search Mode: • exactly matching O starts Clear button	
	Dispersant and oil
1. Select Oil Enter search criteria (not case sensitive), click "Search" button, click once on desired name in list below.	3. Select Dispersant/Oil Rat Select All # of toxicity records: and Clear All Select All Clear All
k "Show All" button to view a list of all oils vingoil/dispersant toxicity records.	Show buttons
search Search	# of tovicity recorde:
bar	Chr button Spectroscopy Gravimetry NR Select All Clear All
Oil search	5. Select Analyte(s) @ # of toxicity records;
results	# Of COXICITY FECORDS:
 Oil Selected	At any point selections
2. Select Dispersant	6. Select Exposure Condition(s) @ can be cleared
Select a dispersant from the drop-down list that shows only dispersants for which there is data when mixed with the selected oil.	Constant static Spiked, flow-through Continuous, now-through
Dispersant Name # of toxicity records:	Field enclosure Static renewal Spiked Clear All Selections On This Screen
Dispersant/Oil Name CAS #/ID Sp	Species Name Group Life End Water Time Chow
Con	species Name Group Line End Water Line Show Selection (hrs) Latin

Oil – Search for the desired oil using the search bar. Click once on the desired name in the Search Results.

Dispersant – Select a dispersant from the dropdown menu. Only dispersants that have data with the selected oil appear in the dropdown menu.

Dispersant/Oil Ratio – Select a Dispersant/Oil Ratio from the dropdown menu. Only ratios that have data with the selected oil and dispersant appear in the dropdown menu.

Analytical Method(s) – Select Analytical Method(s) used to quantify the oil and dispersant mixture. NR stands for Not Recorded.

Analyte(s) – Select Analyte(s) measured in the chemical analysis. OL stands for Oil Loading and NAM stands for No Analyte Measured.

Exposure Condition(s) – Select Exposure Condition(s) used in the toxicity experiment(s).

User-Added Data

CAFE gives you the option to add your own data. There are eight to fourteen steps to complete before your data are submitted. To graph accurately, all steps must be complete and submitted (indicated by the green section labels) before clicking the final green "Submit" button. As you add your data, the orange summary bar will populate with your selections. You also have the ability to add some notes to your data.

Scenario – First, specify the scenario. The screen will adjust to the specified scenario.

Chemical/Dispersant/Oil – Select Chemical, Dispersant, or Oil. You can search for the chemical/dispersant/oil, or add a new one if the chemical/dispersant/oil of interest to you doesn't appear in the search.

If you choose to add a new chemical/dispersant or oil, you must submit the new chemical/dispersant/oil by clicking on the "Submit New Chemical/Dispersant/Oil" button. This is confirmed by a message such as:

Alert
New chemical name successfully added to database.
ОК

Your new chemical/dispersant/oil should also appear in the search results.

Note: If a chemical is added without an associated CAS number, CAFE will enter CAS numbers as defaults (e.g, User/1)

Species – Select the species for which data are available. You can search a species' common or scientific name, or add a new one if the species of interest to you doesn't appear in the search.

If you choose to add a new species, you must select a species group (fish, crustacean, mollusk, coral, or other). Then add a common and scientific name for your new species. Submit the new species by clicking on its "Submit" button. This is confirmed by a message and your species' name should appear in the search results.

Alert	
New species name successfully added to the database.	
Cancel OK	

Life Stage – Select Life Stage(s) (adult, embryo, juvenile, larva, or unknown) for which data are available.

Endpoint – Select Endpoint(s) (EC₅₀, LC₅₀, LOEC, or NOEC).

Water Type – Select Water Type(s) (fresh water or salt water).

Test Duration – Select a Test Duration (24, 48, 72, or 96 hours)

Applicability – Specify Applicability score(s) (high, moderate, or low), based on relevance of these data to spill response. See the CAFE User's Manual for criteria.

Concentration – Specify Concentration (μ g/I). Enter the concentration in the space provided.

Others – Depending on the scenario you've chosen, specify Analytical Method, Analytes, Dispersant/Oil Ratio, or Exposure Condition(s) on their various dropdown menus and spaces provided.

User-Added Data Entry Screen To graph accurately, all numbered sections must have value	I data entered (indicated by green section label) before clicking the "Submit" button.
Search Mode: • exactly matching • starts with • ends with • anywhere in Mode I. Specify Scenario (please click on appropriate button below) I. Specify Scenario (please click on appropriate button below) I. Specify Scenario (please click on appropriate button below) I. Specify Scenario (please click on appropriate button below) I. Specify Scenario (please click on appropriate button below) I. Specify Scenario (please click on appropriate button below) I. Specify Scenario (please click on appropriate button below) I. Specify Scenario (please click on appropriate button below) I. Specify Scenario (please click on appropriate button below) I. Specify Scenario (please click on appropriate button below) I. Specify Scenario (please click on appropriate button below) I. Specify Scenario (please click on appropriate button below) I. Specify Scenario (please click on appropriate button below) I. Specify Scenario (please click on appropriate button below) I. Specify Scenario (please click on appropriate button below) I. Specify Scenario (please click on appropriate button below) I. Specify Scenario (please click on appropriate button below) I. Specify Scenario (please click on appropriate button below) I. Specify Scenario (please click on appropriate button below) I. Specify Scenario (please click on appropriate button below	Add new chemical/oil/dispersant
2) Select Chemical by CAS Number or Chemical Name CAS Number Enter CAS, exact matches only Enter CAS, exact matches only Chemical Name(s) found: Chemical Name(s) foun	Add New Chemical If database does not list the desired chemical, enter new chemical name and CAS number, then click the submit button. a. Enter Chemical Name b. Enter CAS # (if known) Submit New Chemical Submit New Chemical
Search/Select/Add Species Common Name Search Search Species Common Name Latin Name Search Species Common Name Latin Name Current User Data Selections: Chemical Name: CAS Number: Common Name:	Add New Species a. Select Species Group b. Enter Common Name c. Enter Latin Nam Add new Species Test Duration: Concentration:

After the user-added data records are submitted, an Alert message will prompt you to go back to your specified scenario (Home button) and include your user-added records in your query. You also have the option to view your added data or add more data.

Alert	Contraction of the second
	ta successfully added to database. To view on a mical scenario using this chemical and shade by
	View Data Add Data Home

The View Data screen is shown below.

		base of chemical, dispersant, and oil toxicity effects on various organisms. Additionally, the user's responsibility to verify the accuracy and completeness of all user-added data.
	(Export User-Added Data Import User-Added Data Add Data Entry Screen
Chemicals/Oils/Dispersants Names cannot be edited, they can be deleted only when the Category Chemical Name Chemical Val Chemical Disp & Oil Value Dispersant Disp & Oil Value Oil	ey are not attached to any records. # of records 1 2 Delete	Species Names Names cannot be edited, they can be deleted if they are not attached to any Common Name Latin Name Species Group # of records Green Coral Lisa corales Coral 1 Delete Value Crab Valus Crabby Crustacean 1 Delete Value Fish Valus fishes Fish 1 Delete
Data Chemical/ CAS # / Oil Specie: Code Dispersant ID Name Group	s Species Scientific Lif Name Name Sta	ge Point Type Dur. Analyte Method Ratio (µg/l) Conditions
1 Benzene 71432 Fish 1 Val Chemical 3453467 Coral 4 Value Dispersant User - Value Oil Value Oil Fish 4 Value Dispersant User - Value Oil Value Oil Crustacea	Atlantic Salmon Salmo salar Adi Green Coral Lisa corales Unkn Value Fish Valus fishes Unkn in Value Crab Valus Crabby Adi	Nown LC50 Fresh 48 234243 nown LC50 Fresh 48 NAM Spectroscopy 1:10 4545 Constant static XX
Data Code Key: 1 = Chemical 2 = Dispersant Only	3 = Oil Only 4 = Dispersant and O	vil

The **Chemicals/Oils/Dispersants** and **Species Names** sections displays new useradded chemicals/oils/dispersants and species names.

• These chemicals/oils/dispersants and species names can only be deleted when they do not have a complete record associated with them (e.g., a concentration, life stage, etc.). Otherwise, you would have to delete your individual record associated with the new chemical/oil/dispersant. The number of records of the chemical/oil/dispersants and/or species names column(s) should reduce with your deletion. Then you can delete the chemicals/oils/dispersants and species names.

Under **Toxicity Data**, individual records display by toxicity parameter.

- Click on the pencil icon to edit a record.
- Click on the red X button to delete a record.
- Some toxicity parameters don't apply to a given scenario. For example, a chemical record would not have the following toxicity parameters: Analyte, Analytical Method, Dispersant, Oil Name, or Exposure Conditions.

Oils and dispersants display as CAS numbers under the CAS#/ID field.

Once you have plotted your graph, you can choose to shade by "Sources," which helps you distinguish between the data you added and the CAFE data. In the example below, the user-added data points are labeled with blue dots.

Similar to the CAFE data, the user-added data points have an associated report providing greater detail about the data.

User Report	Return
Chionoecetes bairdi	100 (1) (2) (455(0) (00)745(7) (100) 50 0 10.0e-04 1.0e-02 1.0e-01 1.0e+01 1.0e+02 1.0e+03 1.0e+04 1.0e+05 1.0e+06 1.0e+07 1.0e+08 1.0e+09 1.0e+10 1.0e+11 1.0e+12 Concentration (µg/L)
Oil (1)	Chemical Name Corexit 9500 CAS Number Alaska North Slope
Oil (2) Dispersant - 3765	WATER TYPE Sait Water SPECIES TEST DURATION 96 SCIENTIFIC NAME Chionoecetes bairdi ENDPOINT LC50 LIFESTAGE Adult
User (3)	CONCENTRATION 400 APPLICABILITY High RATIO 1:10 Crustacean
Dil	ANALYTE TPH ANALYTIC METHOD Chromatography
(4)	EXPOSURE CONDITIONS Spiked

User-Added Data Limitations

- For the Dispersant and Oil scenario, you can only input five dispersant and oil ratios per test duration.
- Certain oil and dispersant combinations cannot be located through the search feature in the Dispersant and Oil scenario—even though the individual products may be available in the database. Only a limited number of oils are associated with dispersants in the combination scenario. For example, you can search for and locate the oil/dispersant combination, Alaska North Slope and Corexit 9527; however, you can't locate the oil/dispersant combination, Agha Jari Iran and Actusol (even though both these products are available independently in the Oil scenario and the Dispersant scenario). If you want to add an oil/dispersant record for Agha Jari Iran and Actusol, you need to add "Agha Jari Iran" as a *new* oil and "Actusol" as a *new* dispersant. That combination will then be available in the Dispersant and Oil scenario.
- CAFE is an aquatic database, but data from terrestrial species may still be present. For example, the search for "rat" produces several results. Future QA/QC efforts are needed to identify and remove all terrestrial records from this database

User-Added Data Import and Export

CAFE now has an import and export feature. When you click to view your user-added data, you can see the new feature.

NOTE: You will not be able to import or export your user-added data from CAFE version 1.1. You will only be able to import and export your user-added data with version 1.2. or later.

Export User-Added Data

To export user-added data, first make a backup copy of CAFE. Then click the button below.

The export is confirmed with summary text

- 4 user records successfully exported.
- 3 chemical names successfully exported.
- 3 species names successfully exported.

Three files are created with your export: main_data.mer, chemical_names.mer and species_data.mer containing the exported data. These files are placed in a folder called UserData in your CAFE folder. Make sure you make copy of your UserData folder. It contains the three files you need. Keep track of where your UserData folder is.

Name	Date modified	Туре	Size
鷆 de	3/16/2016 12:40 PM	File folder	
🐌 en	3/16/2016 12:40 PM	File folder	
퉬 es	3/16/2016 12:40 PM	File folder	
Extensions	3/16/2016 12:40 PM	File folder	
🌗 fr	3/16/2016 12:40 PM	File folder	
鷆 it	3/16/2016 12:40 PM	File folder	
🌗 ja	3/16/2016 12:40 PM	File folder	
퉬 ko	3/16/2016 12:40 PM	File folder	
鷆 ni	3/16/2016 12:40 PM	File folder	
鷆 pt	3/16/2016 12:40 PM	File folder	
January Sasla	3/16/2016 12:40 PM	File folder	
鷆 sv	3/16/2016 12:40 PM	File folder	
퉬 Themes	3/16/2016 12:40 PM	File folder	
퉬 UserData	3/16/2016 12:40 PM	File folder	
J XTPTrans	3/16/2016 12:40 PM	File folder	
퉬 zh-Hans	3/16/2016 12:40 PM	File folder	
🔕 CAFE.caf	3/16/2016 2:04 PM	CAFE	779,708 KB
N CAFE.exe	4/22/2015 7:32 PM	Application	9,566 KB
SclientUI.dll	4/22/2015 7:32 PM	Application extens	286 KB
OBEngine.dll	4/22/2015 7:32 PM	Application extens	8,058 KB
避 Field_Names_as_Header.xsl	9/13/2012 5:37 PM	XSL Stylesheet	1 KB
FMEngine.dll	4/22/2015 7:32 PM	Application extens	6,068 KB
🔁 FMP Acknowledgements.pdf	4/22/2015 7:26 PM	Adobe Acrobat D	127 KB
NRSRC.dll	4/22/2015 7:32 PM	Application extens	10,882 KB
FMWrapper.dll	4/22/2015 7:32 PM	Application extens	191 KB
🚳 Interop.dll	4/22/2015 7:32 PM	Application extens	1,177 KB
🚳 libcurl.dll	4/22/2015 7:32 PM	Application extens	454 KB
🚳 libeay32.dll	4/22/2015 7:32 PM	Application extens	1,567 KB
🚳 Libetpan.dll	4/22/2015 7:32 PM	Application extens	428 KB
🚳 libsasl.dll	4/22/2015 7:32 PM	Application extens	356 KB
🚳 mfc120chs.dll	10/5/2013 1:58 AM	Application extens	46 KB
	Contraction of the second	ation	

Import User-Added Data

After you complete a fresh install of CAFE, make sure you copy and replace the UserData folder with your exported UserData folder.

Once you have completed those steps, open your new copy of CAFE. Click the View User-Added Toxicity Data button then click the Import User-Added Data button.

Instructions for moving your user-added data from your old into your new version of CAFE.
Import User-Added Data
The following instructions will walk you through the process of importing your user-added data into your new version of CAFE.
During the export of your user-added data some files were created.
First move these files from the UserData folder where they currently reside into the UserData folder in your new copy of CAFE.
Alternately you can replace your whole UserData folder in your new version of CAFE with the UserData folder in your old version.
At the very least you will have a file maindata.mer which contains your user-added data records. If you also exported user-added chemical names and user-added species names then you will also have the files chemicalnames.mer and speciesdata.mer.
After you have moved your files click on Import user-added data to proceed with your import.
Import user-added data

On the Import User-Added Data screen, click the Import user-added data button. A summary confirming the import should appear.

Importing Data records Importing Chemical Names Importing Species Data Finished

Then you can view your imported user-added data to confirm.

Home User-Adde		v default, CAFE has a con AFE allows users to add t										
				Exp	ort User-/	Added	l Data	Impor	t User-	Added	Data	Add Data Entry Screen
Chemical Val Ch	ical Name nemical Dispersant	# of records 1 2	any records. Delete Delete v	Names	Coral Crab	Latin Lisa Valu	d, they Name Corales Is Crabb Is fishes	Species Coral Dy Crusta	s Group			to any Delete
	D Name Group Fish	Species Name Atlantic Salmon Sa Green Coral Lis Value Fish Va	Scientific Name Imo salar a corales U	Life E Stage P Adult L Inknown L	rry will app ind Water pint Type CS0 Fresh CS0 Fresh CS0 Fresh DEC Salt	Test Dur. /	Analyte NAM		Disp/Oil	Conc. (µg/l) 1111 234243 4545	confirm dele Exposu Conditic Constant static Static renewal	re
				A				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			-	~~~~

Short Exposure Risk Reports

Documents are available for a select number of chemicals (46 total), outlining the risks of these chemicals for short exposure durations. These reports were created by using existing toxicity data (LC_{50} or EC_{50}) from tests performed under longer exposure durations (e.g., 24, 48, 72, 96 h) to estimate short-term toxicity (1, 2, and 4 h). These reports were created using the methodology described in the following paper:

Bejarano, A.C. and J. K. Farr. 2013. <u>Development of Short Acute Exposure Hazard</u> <u>Estimates: A Tool for Assessing the Effects of Chemical Spills in Aquatic Environments</u>. Environmental Toxicology and Chemistry. Environmental Toxicology and Chemistry. 32 (8): 1918-1927.

Users are highly encouraged to print the short exposure risk reports.

hemical Name	CAS Number	Return View:
1,1-Dimethylhydrazine	57147	Short Exposure Risk
1,1,2-Trichloroethane	79005	Short Exposure Risk
1,2,3,4,5,5-Hexachloro-1,3-cyclopentadiene	77474	Short Exposure Risk
2-Chloroethanol	107073	Short Exposure Risk
2-Furancarboxaldehyde	98011	Short Exposure Risk
2-Propanol	67630	Short Exposure Risk
2-Propanone	67641	Short Exposure Risk
2-Propenal	107028	Short Exposure Risk
2-Propenenitrile	107131	Short Exposure Risk
2,4-Diisocyanate-1-methylbenzene	584849	Short Exposure Risk
Acetic acid ethyl ester	141786	Short Exposure Risk
Ammonia	7664417	Short Exposure Risk
Benzene	71432	Short Exposure Risk
Bromine	7726956	Short Exposure Risk
Bromine chloride	13863417	Short Exposure Risk
Bromomethane	74839	Short Exposure Risk
Butyl benzyl phthalate	85687	Short Exposure Risk
Butyl ester, Acetic acid	123864	Short Exposure Risk
Cadmium	7440439	Short Exposure Risk
Cadmium Chloride	10108642	Short Exposure Risk
Chlorine	7782505	Short Exposure Risk
Chlorobenzene	108907	Short Exposure Risk
Chloromethyl benzene	100447	Short Exposure Risk
Chloromethyl oxirane	106898	Short Exposure Risk
[(Dimethoxyphosphinothioyl)thio]butanedioic acid, Diethyl ester	121755	Short Exposure Risk
Ethanol	64175	Short Exposure Risk
Ethylbenzene	100414	Short Exposure Risk

Benzene -- CAS# 71432

Documentation: CAFE uses two documents to provide guidance to users: this "How-To" Document and a User's Manual. Also available are CAFE training videos.

How-To Document – This document helps users get started on how to use CAFE.

User's Manual – This document provides a more in-depth analysis on the use of CAFE and the extensive QA/QC process that went into developing CAFE.

Training Videos- 5 different training videos contained in a .zip file on how to use CAFE.

Recommended citation: NOAA, 2016 Chemical Aquatic Fate and Effects (CAFE) Database. Version 1.2 [Computer Software]. National Oceanic and Atmospheric Administration, Office of Response and Restoration, Emergency Response Division. Seattle, WA. Review the following scenarios to help you use outputs from CAFE:

Scenario 1: Benzene (CAS No. 71432)

Incident Occurrence: Benzene Release, Parachute Creek, Colorado

A fracking boom for fracked natural gas processor, Williams Energy, spilled an estimated 241 barrels of benzene (CAS No. 71432) into the ground, some of which eventually washed into Parachute Creek. Those responding to this incident would be seeking estimates for fate and effects of benzene.

Melting Point (°C) 5.5° C (Experimental) Ionization Potential (ev) 9.24 eV Density Hvap (cal/g)	ite Data - nysical c operties	Chemical Name				CAS Number	71432
Skin, Eye, and Skin irritant. Skin irritant. Respiratory Irritation Severe eye and moderate skin irritant. Skin irritant upon occupational exposures of >60 ppm for three weeks. Boiling Point (°C) 80° C (Experimental) Melting Point (°C) 5.5° C (Experimental) Density Inization Potential (ev) Autoignition Temp. 528°F (497°C) Vapor Density 2.8 (Air= 1) Viscosity 0.604 cP at 25°C Vapor Pressure (mmHg) 94.8 mm Hg at 25°C (Experimental)			or		Structure		
Respiratory Irritation Severe eye and moderate skin irritant. Skin irritant upon occupational exposures of >60 ppm for three weeks. Boiling Point (°C) 80° C (Experimental) Image: Flash Point 12°F (-11°C) (Closed Cup) (Experimental) Melting Point (°C) 5.5° C (Experimental) Image: Flash Point 12°F (-11°C) (Closed Cup) (Experimental) Density Image: Flash Point 12°F (-11°C) (Closed Cup) (Experimental) Image: Flash Point 12°F (-11°C) (Closed Cup) (Experimental) Natoignition Temp. 928°F (497°C) Image: Flash Point 12°F (-11°C) (Closed Cup) (Experimental) Vapor Density 2.8 (Air= 1) Image: Flash Point 12°F (-11°C) (Closed Cup) (Experimental) Viscosty 0.604 cP at 25°C Image: Flash Point 12°F (-11°C) (Closed Cup) (Experimental) Viscosty 0.604 cP at 25°C Image: Flash Point 12°F (-11°C) (Closed Cup) (Experimental)			°F)			\bigcirc	
Melting Point (°C) 5.5° C (Experimental) Ionization Potential (ev) 9.24 eV Density Hvap (cal/g) Autoignition Temp. 928°F (497°C) Inization Potential (ev) 9.24 eV Vapor Density 2.8 (Air= 1) Inization Potential) 0.0555 at 25°C (Experimental) Viscosity 0.604 cP at 25°C Ionization Potential 94.8 mm Hg at 25°C (Experimental)	Respiratory	Severe eve and moderate skin irritant.	60 ppm for th	hree weeks.]		
Density Hvap (cal/g) Autoignition Temp. 928°F (497°C) Image: Cal/g) Vapor Density 2.8 (Air= 1) Viscosity 0.604 cP at 25°C Vapor Pressure (mmHg) 94.8 mm Hg at 25°C (Experimental)	Boiling Point (°C)	80° C (Experimental)	0	Flash Point 12°F (-11°C) (Closed	Cup) (Experimental)	0
Autoignition Temp. 928°F (497°C) HLC (atm-m3/mol) .00555 at 25°C (Experimental) Vapor Density 2.8 (Air= 1) Log Kow 2.13 (Experimental) Viscosity 0.604 cP at 25°C Vapor Pressure (mmHg) 94.8 mm Hg at 25°C (Experimental)	Melting Point (°C)	5.5° C (Experimental)	0	Ionization Potential (ev) 9.24 eV			0
Vapor Density 2.8 (Air= 1) Log Kow 2.13 (Experimental) Viscosity 0.604 cP at 25°C Vapor Pressure (mmHg) 94.8 mm Hg at 25°C (Experimental)	Density			Hvap (cal/g)			
Vapor Density 2.8 (Air= 1) Log Kow 2.13 (Experimental) Viscosity 0.604 cP at 25°C Vapor Pressure (mmHg) 94.8 mm Hg at 25°C (Experimental) plosive/Flammable Limits Lower 1.4%; Upper 8.0% Water Solubility (mg/L) 1790 at 25°C (Experimental)	Autoignition Temp.	928°F (497°C)		HLC (atm-m3/mol) .00555 at 2	5°C (Exp	erimental)	0
Viscosity 0.604 cP at 25°C Vapor Pressure (mmHg) 94.8 mm Hg at 25°C (Experimental) plosive/Flammable Limits Lower 1.4%; Upper 8.0% Water Solubility (mg/L) 1790 at 25°C (Experimental)	Vapor Density	2.8 (Air= 1)	0	Log Kow 2.13 (Exper	imental)		0
plosive/Flammable Limits Lower 1.4%; Upper 8.0% Water Solubility (mg/L) 1790 at 25°C (Experimental)	Viscosity	0.604 cP at 25°C		Vapor Pressure (mmHg) 94.8 mm Hg	j at 25°C	(Experimental)	0
	xplosive/Flammable Limits	Lower 1.4%; Upper 8.0%	0	Water Solubility (mg/L) $\left 1790 ext{ at } 25^{\circ} ight $	°C (Experi	imental)	0

Question 1: What are the hazards of the chemical?

Answer: With benzene, there are two hazards to consider: (1) Benzene is a fire hazard. Its flash point is very low at 12°F (-11°C), making it highly flammable. With an ignition source, benzene could catch on fire and burn quickly. (2) Benzene can harm humans as a skin and eye irritant, as well as a carcinogen (cancer-causing threat).

ate Data - Che	emical Name	Benze	ne	CAC Number	71.400			
nvironmental roperties EPI 9	Suite v4.11			CAS Number	71432			
Soil Adsorption		ØE	nvironmental Explanations					
Estimated Koc	145.8		f released to the environment, Benzene is expected to be found predominantly in water (4: oil (26.7%), air (31.8%) and sediment (0.37%).	1.1%). It is also expect	ed to be found in			
Primary Biodegradation			oli (26.7%), air (31.8%) and sediment (0.37%).					
Estimated Biodegradation Timeframe	days-weeks		OIL In soil, Benzene is expected to have high mobility based upon a KOC of 145.8 (Estimated).					
Estimated Volatilization fr	om Water	0	Benzene may volatilize from dry soil surfaces based upon a vapor pressure of 94.8 mm Hg (E	Experimental).				
Half-life from Model River (hours)	.995		Benzene may volatilize from moist soil surfaces based upon a Henry's Law constant of 0.005	55 atm-cu m/mole (Exp	erimental).			
Half-life from Model Lake (hours)	84.96		VATER Volatilization from water surfaces is expected to be an important fate process based on a H	enry's Law constant of).00555 atm-cu			
Estimated Hydrolysis at pl	H=7		n/mole (Experimental).					
Half-life (days)		-	Estimated volatilization half-lives for a model river and model lake are 0.995 hours and 84.96	hours, respectively.				
Estimated Atmospheric		0	In water, Benzene is not expected to adsorb to suspended solids and sediment based upor	n a KOC of 145.8 (Estim	ated).			
Half-life (days)	5.486		MB		-			
Estimated Environmental	Partitioning	0 7	The Atmospheric Oxidation Program for Microsoft Windows (AOPWIN) estimates the rate co eaction between photochemically produced hydroxyl radicals and organic chemicals. It shou					
Percent to air	31.8	e	exist in the vapor phase in the environment (VP <1E-8 mm HG), reaction with photochemic					
Percent to water	41.1		on <i>important fate process.</i> Benzene will exist solely as a vapor in the atmosphere based upon a vapor pressure of 94.8	mm Hg (Experimental).				
Percent to soil	26.7				budroud radies!			
Percent to sediment	.37		The half-life for the reaction of Benzene with photochemically generated hydroxyl radicals is concentration of 1.5E+6 OH/cm3 and a 12-hour day.	5.460 days, assuming a	nyuroxyi radical			
Estimated Wastewater Re	moval (%)	0	THER					
Total Removed	68.94		- The Sewage Treatment Model provides an estimate of the fate of a chemical present in the influent to a conventional activated					
Due to Biodegradation	.04		ludge plant as it becomes subject to evaporation, biodegradation, sorption to sludges and lo stimated Wastewater Removal is an estimate of the percentage of the chemical removed fr					
Due to Sludge Adsorption	1.11	b	iodegradation, and sorption to sludges. Benzene, is predicted to be removed from the effli	uent by these three pro				
Due to Volatilization	67.78	p	percent lost to biodegradation, sludge adsorption, and air are 0.04, 1.11, and 67.78%, respe	ectively.				

Question 2: How will this chemical behave in the environment?

Answer: With a relatively high Henry's Law Constant (0.00555 atm-m³/mol) and vapor pressure (94.8 mm Hg), benzene is moderately soluble in water and will volatilize easily. Estimated Environmental Partitioning by the fugacity model predicts that if released into the environment, benzene is expected to be found predominately in water (41.1%), followed by air (31.8%), soil (26.7%), and sediment (0.37%). Estimated Volatilization from Water predicts that from a model river and lake, benzene will volatize at 0.995 and 84.96 hours, respectively.

e Data - alytic Chemical Name thods	enzene	CAS Number	71432
Method # Media		-	
1 1624.0 Water	(mo).		A
2 502.2 (by PID) Water	Contamination and Interferences		
3 524.2 Water	(A) Analytical system: Impurities in the purge gas, organic compounds out-gassing from		
4 602 Water	solvent vapors can interfere. (B) Sample contamination: Samples can be contaminated b		
5 6200B Water	through the bottle seal during shipment and storage. (C) Carry-over: Rinse the purging do water between samples.	evice and sample syringe	with reagent
5 6200C Water	water between samples.		
7 624 Water	Maximum Holding Time		
8 8021B (by GC-ELCD) Various	14 days (after collection)		
9 8021B (by GC-PID) Various	Sample Handling		
0 8260B Various	Collect grab samples in glass containers having a total volume greater than 20 mL. Make	e sure no air hubbles are d	entranned and
1 D5790 Water	maintain the hermetic seal until analysis. Store at 0-4 degrees C from time of collection u		
2 0-3115 Water	present, add 10mg/40mL of sodium thiosulfate prior to collection. Adjust pH to about 2 by	y adding HCI (1+1) while s	tirring.
3 0-4024-03 Water			
14 0-4127-96 Water	Quality Control Requirements The minimum requirements consist of an initial demonstration of laboratory capability, ar	naluaia of a amplea a piked	with lobalad
15 1501 Air	compounds to evaluate and document data quality, and analysis of standards and blank:		
.6 3700 Air			ionnance.
17 3800 Air	References		
.8 1005 Air	EPA Method Guidance CD-ROM (includes MCAWW Methods, and most current EPA Meth	iods)	
es			
Manuf of industrial chemicals such as	▲ Use		<u></u>
2 Chemical intermediate for ethylbenzene,	Manuf of industrial chemicals such as polymers, detergents, pesticides pharmaceuticals	s, dyes, plastics, resins. so	olvent for waxes,
Benzol (benzene) discontinued by crowl	tar resins, oils, natural rubber, etc. gasoline additive /use as solvent is now discouraged/		
4 Was used extensively in the tire industry	Citation		
5 Has been used as a veterinary disinfecta		als. Whitehouse Station, N.	J: Merck and
5 Manufacture of explosives, pcb gasoline,	Co., Inc., 1996. pp. 179		
In the past, benzene has been used in t	Source		v
		-	

Question 3: How might you monitor and use this chemical?

Answer: According to Method Number 1624.0, you need to exercise caution when handling benzene. In an analytical system, other organic compounds and solvent vapors can interfere. While handling this chemical, you should select samples in glass containers having a total volume greater than 20 mL. Store the chemical at 0-4 °C and make sure no air bubbles are entrapped until analysis. Benzene has many uses, including the manufacture of industrial chemicals such as polymers, detergents, pesticides, pharmaceuticals, dyes, plastics, and resins, and as a solvent for waxes, resins, oils, natural rubber, etc.

Question 4: What is the toxicity of this chemical?

Answer: In an acute 48-hour exposure, benzene is moderately toxic to practically nontoxic to freshwater fish and crustaceans. The hazard concentrations indicate a HC5 protective value of 7,700 μ g/L or 7.7 mg/L (7.7 ppm).

Scenario 2: Alaska North Slope Crude and Corexit 9500

Incident Occurrence: Oil Spill, Prince William Sound, Alaska

A barge collided near shore, spilling about 1,000 gallons of Prudhoe Bay crude in Prudhoe Bay, Alaska. Corexit 9500 was applied at the spill site at a 1:10 dispersant and oil ratio. The analytical methods used were chromatography. The analytes measured were TPHs and PAHs. Prudhoe Bay is a major fishing ground in the commercial fishing industry. You are concerned about how toxic the mixture is to fish and crustaceans.

Question 1: How toxic is this mixture to fish and crustaceans?

Answer: In an acute 96-hour exposure, Prudhoe Bay crude and Corexit 9500 together are moderately toxic to practically nontoxic to fish and crustaceans. The hazard concentrations indicate a HC5 protective value of 6,200 μ g/L or 6.2 mg/L (6.2ppm).

Question 2: How toxic is Prudhoe Bay crude (alone) to fish and crustaceans?

Answer: In an acute 96-hour exposure, Prudhoe Bay crude is very highly toxic to slightly toxic to fish and crustaceans. The hazard concentrations indicate a HC5 protective value of 730 μ g/L or 0.73 mg/L (0.73 ppm).

Question 3: How toxic is Corexit 9500 (alone) to the fish and crustaceans?

Answer: In an acute 96-hour exposure, Corexit 9500 is moderately toxic to practically nontoxic to fish and crustaceans. The hazard concentrations indicate a HC5 protective value of $3,700 \ \mu$ g/L or $3.7 \$ mg/l ($3.7 \$ ppm).

U.S. DEPARTMENT OF COMMERCE Penny Pritzker Secretary, U.S. Department of Commerce

Dr. Kathryn D. Sullivan Under Secretary of Commerce for Oceans & Atmosphere and NOAA Administrator

Dr. W. Russell Callender Assistant Administrator for Ocean Services and Coastal Zone Management, National Ocean Service