

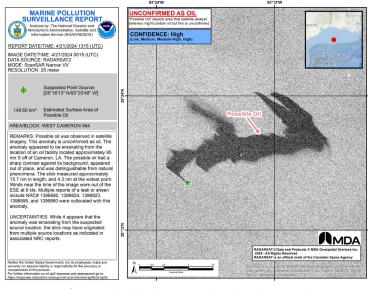

## REMOTE SENSING OPTIONS FOR OIL SPILL RESPONSE

Remote sensing is acquiring data using sensors from a distance.

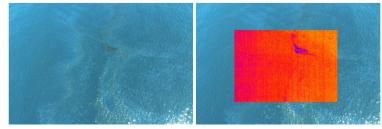
Example: a Short-Range Uncrewed Aircraft System (SR-UAS) with a visible light camera taking photographs of oiled shoreline or using infrared to measure thermal heat.

The three main aerial remote sensing platforms are UAS, crewed aircraft, and satellites.




| Platform      | Time to Deploy          | Useful for/Confidence                                                                                                              | Limitations                                                                                               | Excels at                                                                                                                         | Common Sensors/Products                                                                                 |  |
|---------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|
| UAS           | Hours-1 day*            | Small to small/medium scale.<br>High confidence of accurate<br>detection, based on training.                                       | Operate within Line of Sight (LOS) of remote operator; flight time limited by battery.                    | Low and slow flights capture the highest resolution images: least expensive option to deploy.                                     | Visible Spectrum Camera: Oblique and nadir imagery Video Thermal Infrared Multispectral                 |  |
| Crewed Aerial | Hours-1 day*            | Medium to large scale.<br>High confidence of accurate<br>detection, based on training.                                             | Resolution not as high as UAS; higher altitude; requires a larger footprint (pilot, crew, observers).     | Covering large areas; helicopters can hover in place to focus in on an area if need be; can hold larger sensor payloads than UAS. | Visible Spectrum Camera: Oblique and nadir imagery Video Handheld Camera Thermal Infrared Multispectral |  |
| Satellite     | Days**                  | Medium to large scale. Reconnaissance for detecting oil slicks. Harder to identify false positives without another asset on scene. | Resolution is measured in meters; orbital satellites could take days to make a pass and collect an image. | Detecting spill extent; reconnaissance, remote portions of the AOR.                                                               | Visible Spectrum Camera Muli/Hyperspectral Ultraviolet Synthetic Aperture Radar (SAR) Polarization      |  |
|               |                         | ed operators and location of assets                                                                                                |                                                                                                           |                                                                                                                                   |                                                                                                         |  |
| **Depending   | on satellite. Geostatio | nary satellites can be tasked quickl                                                                                               | y, while orbital satellites coulc                                                                         | l take days                                                                                                                       |                                                                                                         |  |

## **FOSC(R)** Remote Sensing Considerations:


- What resources are available in your AOR? How would you procure them (BOA/sub-contractor, PRFA, USCG, partner agencies)?
- o Have you confirmed the confidence levels for remote sensing products? Prior to making tactical decisions, do you need to verify the data? Ex: Is it oil or is it an "anomaly"?
- o Remote sensing may require significant data management effort to process the data into a final product. Have you (or your remote sensing provider) accounted for that?
- What is the intended end use of the data and imagery? Is it directing real-time tactical operations, briefing command, building a picture of the scope & impact, etc.? This will drive the selection of sensor, platform, and final product.

|                           | PLATFORMS                                    |                                                                              |                                            |                                     | SENSORS  |               |              |          |  |  |
|---------------------------|----------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------|----------|---------------|--------------|----------|--|--|
|                           |                                              |                                                                              |                                            | ✓= frequent use, ○ = infrequent use |          |               |              |          |  |  |
| Operation                 | Satellite                                    | Aerial                                                                       | UAS                                        | Optical                             | Thermal  | Multispectral | Polarization | Lidar    |  |  |
| Reconnaissance            | Very large area with poorly defined location | Large area with generally known location                                     | Smaller area with generally known location | <b>~</b>                            | <b>~</b> | <b>~</b>      | <b>~</b>     |          |  |  |
| Supplemental/ Hotspot     |                                              | Large area that<br>cannot be accessed<br>with UAS due to<br>VLOS limitations | Smaller area with known location           | <b>~</b>                            | 0        | 0             | 0            |          |  |  |
| Detecting/ Imaging Sheens | Large area with poorly defined location      | Large area with generally known location                                     | Smaller area with generally known location | ~                                   |          | <b>~</b>      |              |          |  |  |
| Vessel/Debris Inspection  |                                              |                                                                              | Smaller area with known location           | <b>~</b>                            |          |               |              |          |  |  |
| Wildlife Detection        |                                              | Large area with generally known location                                     | Smaller area with generally known location | <b>~</b>                            | 0        | <b>~</b>      | <b>~</b>     |          |  |  |
| Environment Assessment    |                                              | Large area with known location                                               | Smaller area with known location           | <b>~</b>                            | 0        | 0             |              |          |  |  |
| Aids to Navigation        |                                              | Large area with generally known location                                     | Smaller area with generally known location | <b>~</b>                            |          |               |              |          |  |  |
| Oil Characterization      |                                              | Large area with known location                                               | Smaller area with known location           | <b>~</b>                            | <b>~</b> | <b>~</b>      | <b>~</b>     | <b>~</b> |  |  |

Figure 31. Decision matrix for which platform to use and when.



Report of potential oil slick using Satellite based SAR. Credit: NOAA



Left: Aerial image of oil on water taken from a Parrot drone. Right: Thermal image from a Parrot drone overlaid on the aerial image. The oil appears purple due to a different thermal signature from the surrounding water. Credit: NOAA

