Feed aggregator

Mystery Sheen, North of Dominican Republic

Incident News

- Wed, 11/26/2014 - 16:00
On the morning of Nov. 27, the U.S. Coast Guard was notified of a sighting by commercial aircraft. Three planes, flying between 24-37,000 feet, reported seeing a 6 mile by 1 mile red-brown patch on the water, approximately 76 miles north of the Dominican Republic, moving east. At this time, no Coast Guard assets are being deployed to investigate.

Before Breaking Ground for Restoration, Digging for Signs of the Past

Latest on Response and Restoration Blog

- Tue, 11/25/2014 - 09:37

This is a post by Carl Alderson of NOAA’s Restoration Center.

Glossy Ibis flocking to an accidental wet meadow, left by the farmer’s plow in early spring 2003 at Mad Horse Creek. Salem Nuclear Power Plant in the distance. (NOAA)

Looking across the open fields of the surrounding farm community, I am reminded of the long history of both European and Native American settlement in this portion of southwest New Jersey. Before Europeans arrived in the 17th century, this area was part of Lenape Indian territory.

Today, however, it is the site of a future restoration project at Mad Horse Creek Fish and Wildlife Management Area.

In partnership with the State of New Jersey, I’m involved in an effort to restore nearly 200 acres of degraded marshland, wet meadow, and grassland in this part of Salem County.

The restored habitat will provide food as well as roosting and nesting habitat for birds. This is one of many projects NOAA and our partners have developed as part of the restoration plan in the wake of the 2004 Athos I oil spill, which killed nearly 12,000 birds along the nearby Delaware River.

The Artifacts of Nature

Numerous historical artifacts have been uncovered on lands surrounding Mad Horse Creek, so it’s important that before we begin restoring the natural habitat, we make sure we are preserving any colonial or Native American artifacts that might be hidden beneath these fields.

I’ve been working with Vincent Maresca, a Senior Historic Preservation Specialist with the State of New Jersey to develop plans for a Phase I archaeological investigation of the area. Using a disk cultivator (a machine typically used to cultivate soil between rows of plants), we will be disking all 200 acres of the restoration site, turning over the soil at a depth of 18 inches.

Once we get a rainstorm, we can expect any artifacts in the soil to be revealed. At that point, it will take a team of 12 people two weeks to walk the site, one person to a row, looking for exposed shards of pottery or other objects. Anything we find will be placed into collection bags and identified with the GPS location.

If we find historical artifacts at the Mad Horse Creek restoration area, we will begin a Phase II archaeological investigation. This likely would involve digging more extensive excavation pits in the immediate area of each find to uncover other potential artifacts.

The people who do this work are known as field archaeologists. They typically have a degree in anthropology or archaeology and receive specialized training in testing and excavating archaeological sites; screening the soil for evidence; washing, bagging, and labeling artifacts; and completing field inventories of their findings.

When Restoration Meets Preservation

No restoration work will begin until we complete this archaeological search. At all times, NOAA makes sure to consult with historic preservationists on each of our sites in accordance with the National Historic Preservation Act.

In the first part of the process we ask for input from state experts like Vincent Maresca. Those experts determine whether we should do an archaeological evaluation of the site based on the likelihood of finding artifacts, as was the case at Mad Horse Creek. If the likelihood is high, we then seek input from the federal agency known as the Advisory Council on Historic Preservation.

I don’t know what we’re going to find at Mad Horse Creek, if anything, but as we near Thanksgiving, I am particularly thankful to be working on a project that is working to restore and preserve both our natural and cultural treasures.


After Opening up a Pennsylvania Creek for Fish, Watching Recovery Follow

Latest on Response and Restoration Blog

- Fri, 11/21/2014 - 05:00

This is a guest post by Laura Craig, Ph.D., Associate Director of River Restoration, American Rivers.

Restoring Darby Creek, a tributary of the Delaware River, meant tearing down three now-defunct mill dams. Here, the Hoffman Park dam at Lansdowne, Pennsylvania, comes down. (American Rivers)

Early settlement along Pennsylvania’s Darby Creek relied upon dams to turn the water wheels of mills, powering economic growth. However, as time wore on, the dams on this tributary of the Delaware River fell into disrepair and these days no longer serve a function. Instead, they have been blocking the passage of fish along this creek. That is, until now.

In late summer of 2012, American Rivers and our project partners, NOAA’s Damage Assessment, Remediation, and Restoration Program  and the Pennsylvania Fish and Boat Commission, began tearing down some of those now-defunct dams as part of a multi-year effort to restore Darby Creek. Initiated in 2007, the effort involved removing three dams near Philadelphia: Darby Borough Dam, Hoffman Park Dam, and Kent Park Dam. In addition, we took out a set of abandoned railroad piers and realigned an 800 foot section of the creek.

We removed these barriers to improve passage for a range of resident and migratory fish, including American shad, hickory shad, alewife, river herring, American eel, bass, shiners, and suckers. The project also aims to enhance stream habitat, alleviate flooding, benefit public safety, and restore free-flowing conditions along the creek.

Shown in 2014, this portion of Darby Creek now features restored shoreline habitat with stabilizing structures. (American Rivers)

Overall, the Darby Creek Restoration Project connected 2.6 miles of upper stream to the lower 9.7 miles, which link directly to the Delaware River. It was here in 2004 when the Athos I tanker spilled oil that would spread along miles of the Delaware and its tributaries similar to Darby Creek.

This $1.6 million dollar effort to restore Darby Creek was funded primarily by the Natural Resource Damage Assessment settlement from the Athos I oil spill. Additional funding came from the Pennsylvania Department of Environmental Protection’s Growing Greener Program and the National Fish and Wildlife Foundation. All restoration activities were completed in June 2013, but we are still monitoring the restored areas to ensure the area is recovering.

At the former dam locations we are already seeing recovery of shoreline areas planted with a diverse mix of seed, shrubs, and trees. Restoring vegetation along the creek stabilizes exposed soil and reduces erosion in the short term and provides shade, habitat, and food sources over the long term. We are also observing positive changes to stream habitat as a result, including fewer actively eroding banks and less fine sediment clouding the creek’s waters.

In terms of fisheries, we are noting a shift since the dams were removed toward a resident community of fish that prefer free-flowing water conditions. While we haven’t yet encountered any migratory fish at the former dam locations, this fall fisheries biologists with the Pennsylvania Fish and Boat Commission came across several pods of very young blueback herring in the tidal portion of the creek, near where it joins the Delaware River at the John Heinz National Wildlife Refuge. This is great news, because it suggests that blueback herring are using the lower part of the tributary as a nursery. In future years we hope to see them advance up the creek to the locations where the dams were removed.

For more information on the Athos I oil spill and the resulting restoration, visit response.restoration.noaa.gov/athos and http://www.darrp.noaa.gov/northeast/athos/restore.html.


When the Dynamics of an Oil Spill Shut Down a Nuclear Power Plant

Latest on Response and Restoration Blog

- Wed, 11/19/2014 - 10:19

Precautionary containment boom is visible around the water intake system at the Salem Nuclear Generating Station in New Jersey on December 6, 2004. The nuclear plant was shut down for 11 days to prevent the heavy, submerged oil from the Athos spill from clogging the water intakes. (NOAA)

“I’ve never reopened a nuclear power plant,” thought NOAA’s Ed Levine. Despite that, Levine knew it was his job to get the right information to the people who ultimately would make that decision. This was his role as a NOAA Scientific Support Coordinator during oil spills. However, most major oil spills do not affect nuclear power plants. This wintry day in 2004 was an exception.

Forty miles north of the Salem Nuclear Generating Station in New Jersey, an oil tanker called the Athos I had struck an object hidden beneath the Delaware River. As it was preparing to dock at the CITGO refinery near Philadelphia on November 26, the ship began tilting to one side, the engine shut down, and oil started gushing out.

“Not your typical oil spill,” later reflected Jonathan Sarubbi, who served as U.S. Coast Guard Captain of the Port and led the federal response during this incident. Not only did no one immediately know what the ship had hit—or where that object was located in the river channel—but the Athos, now sitting too low in the water to reach the dock, was stuck where it was. And it was still leaking its cargo of heavy Venezuelan crude oil.

Capt. Sarubbi ordered vessel traffic through this busy East Coast shipping channel to stop until the object the Athos hit could be found. Little did Capt. Sarubbi, Levine, and the other responders know that even more challenges would be in store beneath the water and down the river.

Getting Mixed up

Most oils, most of the time, float on the surface of water. This was precisely what responders expected the oil coming out of the Athos to do. But within a couple days of the spill, they realized that was not the case. This oil was a little on the heavier side. As it shot out of the ship’s punctured bottom, some of the oil mixed with sediment from the river bottom. It didn’t have far to go; thanks to an extremely low tide pulling the river out to sea, the Athos was passing a mere 18 inches above the bottom of the river when it sprung a leak.

Now mixed with sediment, some of the spilled oil became as dense as or denser than water. Instead of rising to the river surface, it sank to the bottom or drifted in the water column. Even some of the oil that floated became mixed with sediment along the shoreline, later sinking below the surface. For the oil suspended in the water, the turbulence of the Delaware River kept it moving with the currents increasingly toward the Salem nuclear plant, perched on the river’s edge.

NOAA’s oil spill trajectory model GNOME forecasts the spread of oil by assuming the oil is floating on the water’s surface. Normally, our oceanographers can verify how well the forecasts are doing by calibrating the model against twice-a-day aerial surveys of the oil’s movement. The trouble with oil that does not float is that it is harder to see, especially in the murky waters of the Delaware River.

Responders were forced to improvise. To track oil underwater, they created new sampling methods, one of which involved dropping weighted ropes into the water column at various points along the river. The ropes were lined with what looked like cheerleader pom-poms made of oil-attracting plastic strips that would pick up oil as it passed by.

Nuclear Ambitions

Nuclear plants like the Salem facility rely on a steady flow of freshwater to cool their reactors. A thin layer of floating oil was nearing the plant by December 1, 2004, with predictions that the heavier, submerged oil would not be far behind. By December 3, small, sticky bits of oil began showing up in the screens on the plant’s cooling water intakes. To keep them from becoming clogged, the plant decided to shut down its two nuclear reactors the next day. That was when NOAA’s Ed Levine was tasked with figuring out when the significant threats due to the oil had passed.

Eleven days later, the Salem nuclear plant operators, the State of New Jersey, and the Nuclear Regulatory Commission allowed the plant to restart. A combination of our modeling and new sampling methods for detecting underwater oil had shown a clear and significant drop in the amount of oil around the plant. Closing this major electric generating facility cost $33.1 million out of more than $162 million in claims paid to parties affected by the Athos spill. But through our innovative modeling and sampling, we were able to reduce the time the plant was offline, minimizing the disruption to the power grid and reducing the economic loss.

Levine recalled this as an “eye-opening” experience, one yielding a number of lessons for working with nuclear power plants should an oil spill threaten one in the future. To learn more about the Athos oil spill, from response to restoration, visit response.restoration.noaa.gov/athos.

A special thanks to NOAA’s Ed Levine and Chris Barker, former U.S. Coast Guard Captain Jonathan Sarubbi, and Henry Font, Donna Hellberg, and Thomas Morrison of the Coast Guard National Pollution Funds Center for sharing information and data which contributed to this post.


T/B EMS 5001, Tampa Bay, FL

Incident News

- Mon, 11/17/2014 - 16:00
On November 18, 2014, NOAA was notified by the USCG Sector St. Pete concerning the tank barge EMS 5001. The tow line from the tug parted and the barge deployed its emergency anchor near Tampa Bay, FL. The barge holds 61,000 barrels of jet fuel. The USCG requested a trajectory for a potential release.

Methyl Mercaptan, Dow, La Porte, TX

Incident News

- Fri, 11/14/2014 - 16:00
On November 15, 2014, the USCG Sector Houston contacted the NOAA SSC about a release of 300 pounds of Methyl Mercaptan from the Dow facility in La Porte, TX USCG requested fate and effects of this chemical and and potential response actions.

Carrying on a Nearly Fifty Year Tradition, Scientists Examine the Intersection of Pollution and Marine Life

Latest on Response and Restoration Blog

- Fri, 11/14/2014 - 10:22

As reliably as the tides, each month biologist Donald J. Reish would wash over the library at California State University, Long Beach, armed with stacks of 3×5 index cards. On these cards, Reish meticulously recorded every scientific study published that month on pollution’s effects on marine life. When he began this ritual in 1967, this did not amount to very many studies.

“There was essentially none at the time,” says Reish, who helped pioneer the study of pollution’s impacts on marine environments in the 1950s.

Nevertheless, after a year of collecting as much as he could find in scientific journals, he would mail the index cards with their handwritten notes to a volunteer crew that often included his former graduate students, including Alan Mearns, now an ecologist with NOAA’s Office of Response and Restoration. Like a wave, they would return to the library to read, review, and send summaries of these studies back to Reish. At his typewriter, he would compile the individual summaries into one comprehensive list, an “in case you missed it” for scientists interested in this emerging field of study. This compilation would then be published in a scientific journal itself.

By the early 2000s, Reish handed off leadership of this annual effort to Mearns, an early recruit to the project. Today, Mearns continues the nearly 50 year tradition of reviewing the state of marine pollution science and publishing it in the journal Water Environment Research. Their 2014 review, “Effects of Pollution on Marine Organisms,” comes together a little differently than in the 1960s and 70s—and covers issues that have changed with the years as well.

Signs of the Times

NOAA Office of Response and Restoration biologists Alan Mearns and Nicolle Rutherford tackle another year’s worth of scientific studies, part of an effort begun in 1967. (NOAA)

For starters, vastly more studies are being published on marine pollution and its environmental effects. For this year’s publication, Mearns and his six co-authors, who include Reish and NOAA scientists Nicolle Rutherford and Courtney Arthur, reviewed 341 scientific papers which they pulled from a larger pool of nearly 1,000 studies.

The days of having to physically visit a library each month to read the scientific journals are also over. Instead, Mearns can wait until the end of the year to scour online scientific search engines. Emails replace the handwritten 3×5 index cards. And fortunately, typewriters are no longer involved.

The technology the reviewers are using isn’t the only thing to change with the years. In the early days, the major contaminants of concern were heavy metals, such as copper, which were turning up in the bodies of fish and invertebrates. Around the 1970s, the negative effects of the insecticide DDT found national attention, thanks to the efforts of biologist Rachel Carson in her seminal book Silent Spring.

Today, Mearns and Reish see the focus of research shifting to other, often more complicated pollutants, such as nanomaterials, which can be any of a number of materials roughly 100,000 times smaller than the width of a human hair. On one hand, nanotechnology is helping scientists decipher the effects of some pollutants, while, on the other, nanomaterials, such as those found in cosmetics, show potentially serious effects on some marine life including mussels.

Another major trend has been the evolution of the ways scientists evaluate the effects of pollutants on marine life. Researchers in the United States and Western Europe used to study the toxicity of a pollutant by increasing the amount animals are exposed to until half the study animals died. In the 1990s, researchers began exploring pollutants’ finer physiological effects. How does exposure to X pollutant affect, for example, a fish’s ability to feed or reproduce?

Nowadays, the focus is even more refined, zeroing in on the molecular scale to discern how pollutants affect an animal’s genetic material, its DNA. How does the presence of oil change whether certain genes in a fish’s liver are turned on or off? What does that mean for the fish?

A Year of Pollution in Review

With three Office of Response and Restoration scientists working on this effort, it unsurprisingly features a lot on oil spills and marine debris, two areas of our expertise.

Of particular interest to Mearns and Rutherford, as oil spill biologists, are the studies of biodegradation of oil in the ocean, specifically, how microbes break down and eat components of oil, especially the toxic polycyclic aromatic hydrocarbons (PAHs). Scientists are examining collections of genes in such microbes and determining which ones produce enzymes that degrade PAHs.

“That field has really exploded,” says Mearns. “It’s just amazing what they’re finding once they use genomics and other tools to go into [undersea oil spill] plumes and see what these critters are doing and eating.”

Marine debris research in 2013 focused on the effects of eating, hitchhiking on, or becoming entangled in debris. Studies examined the resulting impacts on marine life, including sea birds, fish, crabs, turtles, marine mammals, shellfish, and even microbes. The types of debris that came up again and again were abandoned fishing gear and plastic fragments. In addition, quite a bit of research attempted to fill in gaps in understanding of how plastic debris might take up and then leach out potentially dangerous chemicals.

Attitude Adjustment

Reish often relied on his former graduate students, including NOAA’s Alan Mearns, to help review the many studies on marine pollution’s effects each year. Shown here in 2004, Reish (seventh from left) is surrounded by a few of his former students who gathered to honor him at the Southern California Academy of Sciences Annual Meeting. Mearns is fifth from left and another contributer, Phil Oshida of the U.S. Environmental Protection Agency, stands between and behind Mearns and Reish. (Alan Mearns)

Perhaps the most significant change over the decades has been a change in attitudes. Reish recalled a presentation he gave at a scientific meeting in 1955. He was discussing his study of how marine worms known as polychaetes changed where they lived based on the effects of pollution in southern California. Afterward, he sat down next to a professor from another college, whose response to his presentation was, “Don, why don’t you go do something important?”

In 2014 attitudes generally skew to the other end of the spectrum when it comes to understanding human impacts on our world and how intertwined these impacts often are with human well-being.

And while there is a lot of bad news about these impacts, Mearns and Reish have seen some bright spots as well. Scientists are starting to observe slow declines in the presence of toxic chemicals, such as DDT from insecticides and PCBs from industrial manufacturing, which last a long time in the environment and build up in the bodies of living things, such as the fish humans like to catch and eat.

The end of the year is approaching and, reliably, Mearns and his colleagues are again preparing to scan hundreds of studies for their annual review of the scientific literature. Reflecting on this effort, Mearns points out another benefit of bringing together such a wide array of research disciplines. It encourages him to cross traditional boundaries of scientific study, enriching his work in the process.

“For me, it inspires out-of-the-box thinking,” says Mearns. “I’ll be looking at wastewater discharge impacts and I’ll spot something that I think is relevant to oil spill studies…We can find out things from these other fields and apply them to our own.”


Zinc Bromide, 90 mi Offshore LA

Incident News

- Thu, 11/13/2014 - 16:00
On November 14, 2014, the USCG MSU Morgan City contacted the NOAA SSC in regards to a surface release of 66 barrels of zinc bromide from a platform in Vermilion Block 342 (90 miles offshore of Louisiana). USCG is requesting information about the potential environmental impacts, fates and effects of this product.

Preventing Chemical Disasters by Improving our Software Tools

Latest on Response and Restoration Blog

- Thu, 11/06/2014 - 11:04

On April 17, 2013, in the farming community of West, Texas, the storage and distribution facility of West Fertilizer Company caught fire. As firefighters attempted to douse the flames, tons of ammonium nitrate stored at the facility detonated, resulting in an explosion [warning*] packed with the force of a small earthquake. The blast killed fifteen people, injured more than 300, and damaged or destroyed more than 150 buildings.

Just two months later, on June 13, disaster struck again—this time at one of 12 chemical plants along a 10-mile stretch of the Mississippi River. In the industrial town of Geismar, Louisiana, the Williams Olefins chemical facility exploded and caught fire, killing two workers and injuring at least 75 others. The blast sent a huge fireball and column of smoke into the air. Fueled by the petrochemical propylene, the fire burned for more than three hours. Authorities ordered residents to remain indoors for hours to avoid the billowing smoke.

Getting Information into the Right Hands Before an Emergency

One of the challenges in preventing disasters such as these is to ensure that critical information gets into the planning cycle, and into the hands of the local emergency planning and responder community. To reduce the likelihood of chemical disasters in the United States, Congress has imposed requirements for governments, tribes, and industry.

For example, the Emergency Planning and Community Right-to-Know Act (EPCRA) of 1986 was created to help communities plan for emergencies involving hazardous substances. EPCRA requires federal, state, and local governments; Indian tribes; and the chemical industry to plan for hazardous chemical emergencies. It also requires industry to report on the storage, use, and releases of hazardous chemicals to federal, state, and local governments.

NOAA’s CAMEO software suite, jointly developed since 1987 with the U.S. Environmental Protection Agency’s Office of Emergency Management, is a key tool in the implementation of EPCRA. CAMEO is a suite of software tools used to plan for and respond to chemical emergencies. Developed to assist front-line chemical emergency planners and responders, CAMEO can access, store, and evaluate information critical for developing emergency plans, such as locations of hazardous chemical storage and nearby hospitals, schools, and other at-risk population centers.

From the Desk of the President

Federal agencies are focused on changing the national landscape of chemical facility safety and security in the wake of the 2013 tragedies. (U.S. Occupational Safety and Health Administration)

After the two major chemical disasters of 2013, President Obama signed Executive Order 13650 (EO 13650) to improve the safety and security of chemical facilities and to reduce the risks of hazardous chemicals to workers and communities.

In addition to several other provisions, this executive order established a senior work group from six different departments and agencies, including the EPA, all of whom are responsible for chemical facility safety and security. In a report released June 6, 2014 [PDF], this work group identified specific actions for the agencies to take, and directly called out enhancements to the CAMEO suite to help address chemical facility safety and security.

A Safer Future Is a More Mobile-Friendly One

Because the executive order specifies that the changes in CAMEO be completed by the end of fiscal year 2016, our office and our EPA partner are crafting a two-year plan for CAMEO. Here are a couple of examples of the work we have ahead.

To ensure broad access to critical chemical information for emergency planners and responders, we will be adding new standards—the Department of Homeland Security’s Chemical Facility Anti-Terrorism Standards—to the regulatory section on our chemical datasheets, which already includes information from EPCRA, the Clean Air Act, and other regulations. This addition will help provide a linkage between regulatory programs.

Another recommendation is that chemical facility data reported under EPCRA be easier for emergency responders and planners to access. As a result, we and our partners will review plans for providing online access to this data via mobile applications. Currently, our CAMEO software programs are mostly stand-alone, computer desktop applications.

To expand offline access to emergency response information for people working in the field, we plan to add a mobile app version of our chemical database tool CAMEO Chemicals, which will have all of the program’s data loaded onto an individual’s smartphone. This will be in addition to the desktop, website, and mobile website versions of CAMEO Chemicals already available.

To maximize access to our chemical plume modeling program, ALOHA, we will make an Internet browser-based ALOHA program that is available as both a website and a desktop application. In addition, we will completely redesign the CAMEO data management program, CAMEOfm, which includes creating a supplemental CAMEO mobile application for viewing the EPCRA data from the linked desktop program.

Chemical accidents are infrequent, and through work like this, we hope to keep them—and their impacts—that way.

*The video and audio recording of the explosion linked to here may be disturbing to some audiences.


How Ghost Fishing Is Haunting Our Ocean

Latest on Response and Restoration Blog

- Thu, 10/30/2014 - 14:08

No, ghost fishing has nothing to do with ghostbusters flicking fishing rods from a boat.

But what is ghost fishing? It’s a not-at-all-supernatural phenomenon that occurs when lost or discarded fishing gear remains in the ocean and continues doing what it was made to do: catch fish. These nets and traps haunt the many types of marine life unlucky enough to become snared in them. That includes species of turtles, fish, sharks, lobsters, crabs, seabirds, and marine mammals.

Fortunately, the NOAA Marine Debris Program isn’t scared off by a few fishing nets that haven’t moved on from the underwater world. For example, through the Fishing for Energy partnership, NOAA is funding projects to study and test ways to keep fishers from losing their gear in the first place and lower the impacts lost gear has on marine life and their homes.

You can learn more about these four recent projects which are taking place from the South Carolina coast to Washington’s Puget Sound. A project at the Virginia Institute of Marine Science at The College of William and Mary will pay commercial fishermen to test special biodegradable panels on crab pots. After a certain amount of time underwater, these panels will break down and begin allowing creatures to escape from the traps. If successful, this feature could help reduce the traps’ ghost fishing potential. The researchers also will be examining whether terrapin turtles, a declining species often accidentally drowned in crab pots, will bypass the traps based on the color of the entrance funnel.

Another, unrelated effort which NOAA and many others have been supporting for years is focused on fishing out the thousands of old salmon nets lost—sometimes decades ago—in Washington’s Puget Sound. These plastic mesh nets sometimes remain drifting in the water column, while other times settling on the seafloor, where they also degrade the bottom habitat.

According to Joan Drinkwin of the Northwest Straits Foundation, the organization leading the effort, “They become traps for fish, diving birds, and mammals. Small fish will dart in and out of the mesh and predators will go after those fish and become captured in the nets. And as those animals get captured in the nets, they become bait for more scavengers.”

You can watch a video about this ongoing project produced by NOAA-affiliate Oregon SeaGrant to learn more about both the problem and the solutions.

This “super net” was first reported in September 2013 at Pearl and Hermes Atoll in the Northwestern Hawaiian Islands. In 2014 scuba and free divers removed this mass of fishing gear that was more than 28 feet long, 7 feet wide, and had a dense curtain that extended 16 feet deep. (NOAA)

Thousands of miles away from the Pacific Northwest, ghost nets are also an issue for the otherwise vibrant coral reefs of the Northwestern Hawaiian Islands. Every year for nearly two decades, NOAA has been removing the lost fishing nets which pile up on the atolls and small islands. This year, divers cleared away 57 tons of old fishing nets and plastic debris. One particularly troubling “super net” found this year measured 28 feet by 7 feet and weighed 11.5 tons. It had crushed coral at Pearl and Hermes Atoll and was so massive that divers had to cut it into three sections to be towed individually back to the main NOAA ship. During this year’s mission, divers also managed to free three protected green sea turtles which were trapped in various nets.

But the origins of this huge and regular flow of old fishing nets to the Northwestern Hawaiian Islands remain a mystery. The islands lay hundreds of miles from any city but also within an area where oceanic and atmospheric forces converge to accumulate marine debris from all over the Pacific Ocean.

“You’ll go out there to this remote place and pull tons of this stuff off a reef,” comments Jim Potemra, an oceanographer at the University of Hawaii at Mānoa, “that’s like going to Antarctica and finding two tons of soda cans.”

You can learn more about the NOAA Marine Debris Program’s efforts related to ghost fishing and why certain types of marine life may be more likely to get tangled up in discarded nets and other ocean trash.


Untangling Both a Whale and Why Marine Life Get Mixed up With Our Trash

Latest on Response and Restoration Blog

- Wed, 10/29/2014 - 13:02

A humpback whale entangled in fishing gear swims near the ocean’s surface in 2005. (NOAA/Hawaiian Islands Humpback Whale National Marine Sanctuary)

In the United States alone, scientific reports show at least 115 different species of marine life have gotten tangled up—literally—in the issue of marine debris. And when you look across the globe that number jumps to 200 species. Those animals affected range from marine mammals and sea turtles to sea birds, fish, and invertebrates.

Sadly, a humpback whale (Megaptera novaeangliae) swimming in the blue waters off of Maui, Hawaii, got first-hand experience with this issue in February 2014. Luckily, trained responders from the Hawaiian Islands Humpback Whale National Marine Sanctuary were able to remove the long tangle of fishing rope wrapped around the whale’s head, mouth, and right pectoral fin. According to NOAA’s National Marine Sanctuaries:

“A long pole with a specially designed hook knife was used by trained and permitted personnel to cut through the entanglement.

Hundreds of feet of small gauge line were collected after the successful disentanglement. The entanglement was considered life threatening and the whale is confirmed to be totally free of gear.”

Check out these short videos taken by the response team for a glimpse of what it’s like trying to free one of these massive marine mammals from this debris:

Net Results

While this whale was fortunate enough to have some help escaping, the issue of wildlife getting tangled in marine debris is neither new nor going away. Recently, the NOAA Marine Debris Program and National Centers for Coastal Ocean Science reviewed scientific reports of ocean life entangled by marine debris in the United States. You can read the full NOAA report [PDF].

They looked at more than 170 reports reaching all the way back to 1928. However, wildlife entanglements didn’t really emerge as a larger problem until after 1950 and into the 1970s when plastic and other synthetic materials became popular. Before that time, fishing gear and “disposable” trash tended to be made out of materials that broke down in the environment, for example, hemp rope or paper bags. Nowadays, when plastic packing straps and nylon fishing ropes get lost or discarded in the ocean, they stick around for a lot longer—long enough for marine life to find and get wrapped up in them.

One of the findings of the NOAA report was that seals and sea lions (part of a group known as pinnipeds) were the type of marine life most likely to become entangled in nets and other debris in the United States. Sea turtles were a close second.

But why these animals? Is there something that makes them especially vulnerable to entanglement?

Location, Location, Location

The two species with the highest reported numbers of entanglements were northern fur seals (Callorhinus ursinus) and Hawaiian monk seals (Monachus schauinslandi). Both of these seals may live in areas where marine debris tends to build up in higher concentrations, increasing their chances of encountering and getting tangled in it.

For example, Hawaiian monk seals live among the coral reefs of the Northwestern Hawaiian Islands, where some 50 tons of old fishing gear washes up each year. These islands are near the North Pacific Subtropical Convergence Zone, where oceanic and atmospheric forces bring together not only plenty of food for marine life but also lots of debris floating in the ocean. Humpback whales migrate across these waters twice a year, which might be how the humpback near Maui ended up in a tangled mess earlier this year.

Just Behave

An endangered Hawaiian monk seal snuggles up on a pile of nets and other fishing gear in the Northwestern Hawaiian Islands. Between the mid-1950s and mid-1990s, the population declined to one-third of its size due at least in part to entanglement in trawl nets and other debris that drift into the Northwestern Hawaiian Islands from other areas (e.g., Alaska, Russia, Japan) and accumulates along the beaches and in lagoon reefs of atolls. (NOAA)

While being in the wrong place at the wrong time can lead to many unhappily tangled marine animals, behavior also plays into the problem. Some species exhibit particular behaviors that unknowingly put them at greater risk when marine debris shows up.

Not only does the endangered Hawaiian monk seal live on shores prone to the buildup of abandoned nets and plastic trash, but the seals actually seem to enjoy a good nap or lounge on piles of old fishing gear, according to visiting scientists in the Northwestern Hawaiian Islands. The playful, curious nature of young seals and humpback whales also makes them more likely to become entangled in marine debris.

Sea turtles, young and old, are another group whose behaviors evolved to help them survive in a world without human pollution but which in today’s world sometimes place them in harm’s way. Young sea turtles like to hide from predators under floating objects, which too often end up being marine debris. And because sea turtles enjoy munching on the food swirling around ocean convergence zones, such as the one in the North Pacific, they also munch on and get mixed up with the marine debris that gathers there too—especially items with loops and openings to get caught on.

While these animals can’t do much about their behaviors, we humans can. You can:


Hilcorp Bay St. Elaine Pipeline, Cocodrie, LA

Incident News

- Sun, 10/26/2014 - 16:00
On October 27, 2014, the USCG MSU Houma contacted the NOAA SSC about a 100 barrel crude oil spill which occurred on 25OCT2014. The oil spill was caused by a pipeline rupture in a marsh habitat north of Grand Isle, LA. The source is secure and removal actions are underway. USCG called to consult NOAA about potential use of in-situ burning as a response strategy.

Barge Natl II, Beaufort Sea, AK

Incident News

- Thu, 10/23/2014 - 16:00
On October 22, 2014, the USCG Sector Anchorage was notified of a 134-FT Self propelled barge carrying approximately 951 gallons of diesel fuel was adrift in the Beaufort Sea. The USCG requested SSC support including potential oil fates and persistence should a discharge occur.

Pleasure Craft Marimar, Salinas Bay, Puerto Rico

Incident News

- Thu, 10/23/2014 - 16:00
On October 22, 2014, the USCG Sector San Juan Incident Management Division received a report of a sunken 33.8' pleasure craft "MARIMAR II" at the Marina De Salinas, in Salinas Bay, Puerto Rico. The vessel is submerged and aground on its starboard side. The USCG opened a Federal Project to hire a certified BOA contractor (Clean Harbors Environmental Services) to deploy 100' of hard boom and 120' sorbents around vessel, containing any possible potential discharge.

The Earth Is Blue and We’d Like to Keep It That Way

Latest on Response and Restoration Blog

- Thu, 10/23/2014 - 10:45

Spinner dolphins in the lagoon at Midway Atoll National Wildlife Refuge in Papahānaumokuākea Marine National Monument. A pod of over 200 spinner dolphins frequent Midway Atoll’s lagoon. (NOAA/Andy Collins)

Often, you have to leave a place to gain some perspective.

Sometimes, that means going all the way to outer space.

When humans ventured away from this planet for the first time, we came to the stunning realization that Earth is blue. A planet covered in sea-to-shining-sea blue. And increasingly, we began to worry about protecting it. With the creation of the National Marine Sanctuaries system in 1972, a very special form of that protection began to be extended to miles of ocean in the United States. Today, that protection takes the form of 14 marine protected areas encompassing more than 170,000 square miles of marine and Great Lakes waters.

Starting October 23, 2014, NOAA’s Office of National Marine Sanctuaries is celebrating this simple, yet profound realization about our planet—that Earth is Blue—on their social media accounts. You can follow along on Facebook, Twitter, YouTube, and now their brand-new Instagram account @NOAAsanctuaries. Each day, you’ll see an array of striking photos (plus weekly videos) showing off NOAA’s—and more importantly, your—National Marine Sanctuaries, in all of their glory. Share your own photos and videos from the sanctuaries with the hashtag #earthisblue and find regular updates at sanctuaries.noaa.gov/earthisblue.html.

You can kick things off with this video:

Marine sanctuaries are important places which help protect everything from humpback whales and lush kelp forests to deep-sea canyons and World War II shipwrecks. But sometimes the sanctuaries themselves need some extra protection and even restoration. In fact, one of the first marine sanctuaries, the Channel Islands National Marine Sanctuary off of southern California, was created to protect waters once imperiled by a massive oil spill which helped inspire the creation of the sanctuary system in the first place.

To minimize damage to the coastline and marine habitat, federal agencies removed the Japanese dock that turned up on the Washington coast in late 2012. In addition to being located within a designated wilderness portion of Olympic National Park, the dock was also within NOAA’s Olympic Coast National Marine Sanctuary and adjacent to the Washington Islands National Wildlife Refuge Complex. (National Park Service)

At times NOAA’s Office of Response and Restoration is called to this role when threats such as an oil spill, grounded ship, or even huge, floating dock endanger the marine sanctuaries and their incredible natural and cultural resources.

Olympic Coast National Marine Sanctuary

In March 2013, we worked with a variety of partners, including others in NOAA, to remove a 185-ton, 65-foot Japanese floating dock from the shores of Washington. This dock was swept out to sea from Misawa, Japan, during the 2011 tsunami and once it was sighted off the Washington coast in December 2012, our oceanographers helped model where it would wash up.

Built out of plastic foam, concrete, and steel, this structure was pretty beat up by the time it ended up inside NOAA’s Olympic Coast National Marine Sanctuary and a designated wilderness portion of Olympic National Park. A threat to the environment, visitors, and wildlife before we removed it, its foam was starting to escape to the surrounding beach and waters, where it could have been eaten by the marine sanctuary’s whales, seals, birds, and fish.

Florida Keys National Marine Sanctuary

In an effort to protect the vibrant marine life of the Florida Keys National Marine Sanctuary, NOAA’s Restoration Center began clearing away illegal lobster fishing devices known as “casitas” in June 2014. The project is funded by a criminal case against a commercial diver who for years used casitas to poach spiny lobsters from the sanctuary’s seafloor. Constructed from materials such as metal sheets, cinder blocks, and lumber, these unstable structures not only allow poachers to illegally harvest huge numbers of spiny lobsters but they also damage the seafloor when shifted around during storms.

A spiny lobster in a casita in the Florida Keys National Marine Sanctuary. NOAA is removing these illegal lobster fishing devices which damage seafloor habitat. (NOAA)

Also in the Florida Keys National Marine Sanctuary, our office and several partners ran through what it would be like to respond to an oil spill in the sanctuary waters. In April 2005, we participated in Safe Sanctuaries 2005, an oil spill training exercise that tested the capabilities of several NOAA programs, as well as the U.S. Coast Guard. The drill scenario involved a hypothetical grounding at Elbow Reef, off Key Largo, of an 800-foot cargo vessel carrying 270,000 gallons of fuel. In the scenario, the grounding injured coral reef habitat and submerged historical artifacts, and an oil spill threatened other resources. Watch a video of the activities conducted during the drill.

Papahānaumokuākea Marine National Monument

Even hundreds of miles from the main cluster of Hawaiian islands, the Papahānaumokuākea Marine National Monument does not escape the reach of humans. Each year roughly 50 tons of old fishing nets, plastics, and other marine debris wash up on the sensitive coral reefs of the marine monument. Each year for nearly 20 years, NOAA divers and scientists venture out there to remove the debris.

This year, the NOAA Marine Debris Program’s Dianna Parker and Kyle Koyanagi are documenting the effort aboard the NOAA Ship Oscar Elton Sette. You can learn more about and keep up with this expedition on the NOAA Marine Debris Program website.


T/B Karen Jean, Narragansett Bay, RI

Incident News

- Wed, 10/22/2014 - 16:00
On October 22, 2014 the tug boat Karen Jean sank about 2 miles east of Scarborough Beach, RI. The vessel sank in about 70 feet of water while towing a work barge. The barge is still attached to the tug and still afloat and has not pollution threat aboard. The tug has a maximum capacity of 10, 000 gallons of diesel fuel, but the owner reports only about 3,000 gallons on board, plus an additional 100 gallons of assorted other petroleum products.

Mystery Sheen , Gulf of Mexico south of Timbalier Island, LA

Incident News

- Sun, 10/19/2014 - 16:00
On October 20, 2014, the USCG Morgan City contacted the NOAA Hazmat Duty Officer regarding a reported mystery sheen located approximately 7 NM south of Timbalier Island, Louisiana. (Gulf of Mexico). The sheen was reported by passing helicopter as an "unknown" source and was described as 3 miles long with a 100 x 200 ft patch of "black oil" near the center. USCG has requested fate and trajectory information.

F/V Sambuca, Gloucester, MA

Incident News

- Sun, 10/19/2014 - 16:00
On 20 October 2014, the NOAA SSC was notified by USCG Sector Boston that the fishing vessel Sambuca sunk at 2020 on the 19th approximately 12 miles east of Gloucester, MA with an estimated 200 gallons of diesel fuel aboard.

Mystery Spill, Naselle River, Naselle River, WA

Incident News

- Sat, 10/18/2014 - 16:00
On October 19, 2014, the USCG Sector Columbia River called the NOAA SSC to report that a mystery spill with a strong diesel smell had been reported on the Naselle River, WA. USCG Sector Columbia River asked for a river forecast and potential downstream movement of the material.

SIMUSHIR, Moresby Island, QCI, Canada

Incident News

- Thu, 10/16/2014 - 16:00
On October 20, 2014, the USCG D17 notified the NOAA SSC that the 441-ft M/V SIMUSHIR (a Russian freighter) had lost propulsion, and was disabled and adrift near the Queen Charlotte Island in Northern British Columbia, Canada. The potential for pollution is 500 tonnes of bunker and 60 tonnes of diesel fuel. The main cargo is containerized box cargo. FOSC Sector Juneau has requested a trajectory to determine if potential spill could impact U.S. waters, shorelines, or resources.
Syndicate content